This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Join with Hilbert lattice zero. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chj0 | |- ( A e. CH -> ( A vH 0H ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( A = if ( A e. CH , A , 0H ) -> ( A vH 0H ) = ( if ( A e. CH , A , 0H ) vH 0H ) ) |
|
| 2 | id | |- ( A = if ( A e. CH , A , 0H ) -> A = if ( A e. CH , A , 0H ) ) |
|
| 3 | 1 2 | eqeq12d | |- ( A = if ( A e. CH , A , 0H ) -> ( ( A vH 0H ) = A <-> ( if ( A e. CH , A , 0H ) vH 0H ) = if ( A e. CH , A , 0H ) ) ) |
| 4 | h0elch | |- 0H e. CH |
|
| 5 | 4 | elimel | |- if ( A e. CH , A , 0H ) e. CH |
| 6 | 5 | chj0i | |- ( if ( A e. CH , A , 0H ) vH 0H ) = if ( A e. CH , A , 0H ) |
| 7 | 3 6 | dedth | |- ( A e. CH -> ( A vH 0H ) = A ) |