This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function analogue of subge0 . (Contributed by Mario Carneiro, 24-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ofsubge0 | |- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> ( ( A X. { 0 } ) oR <_ ( F oF - G ) <-> G oR <_ F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | |- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> F : A --> RR ) |
|
| 2 | 1 | ffvelcdmda | |- ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( F ` x ) e. RR ) |
| 3 | simp3 | |- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> G : A --> RR ) |
|
| 4 | 3 | ffvelcdmda | |- ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( G ` x ) e. RR ) |
| 5 | 2 4 | subge0d | |- ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( 0 <_ ( ( F ` x ) - ( G ` x ) ) <-> ( G ` x ) <_ ( F ` x ) ) ) |
| 6 | 5 | ralbidva | |- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> ( A. x e. A 0 <_ ( ( F ` x ) - ( G ` x ) ) <-> A. x e. A ( G ` x ) <_ ( F ` x ) ) ) |
| 7 | 0cn | |- 0 e. CC |
|
| 8 | fnconstg | |- ( 0 e. CC -> ( A X. { 0 } ) Fn A ) |
|
| 9 | 7 8 | mp1i | |- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> ( A X. { 0 } ) Fn A ) |
| 10 | 1 | ffnd | |- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> F Fn A ) |
| 11 | 3 | ffnd | |- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> G Fn A ) |
| 12 | simp1 | |- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> A e. V ) |
|
| 13 | inidm | |- ( A i^i A ) = A |
|
| 14 | 10 11 12 12 13 | offn | |- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> ( F oF - G ) Fn A ) |
| 15 | c0ex | |- 0 e. _V |
|
| 16 | 15 | fvconst2 | |- ( x e. A -> ( ( A X. { 0 } ) ` x ) = 0 ) |
| 17 | 16 | adantl | |- ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( ( A X. { 0 } ) ` x ) = 0 ) |
| 18 | eqidd | |- ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
|
| 19 | eqidd | |- ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( G ` x ) = ( G ` x ) ) |
|
| 20 | 10 11 12 12 13 18 19 | ofval | |- ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( ( F oF - G ) ` x ) = ( ( F ` x ) - ( G ` x ) ) ) |
| 21 | 9 14 12 12 13 17 20 | ofrfval | |- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> ( ( A X. { 0 } ) oR <_ ( F oF - G ) <-> A. x e. A 0 <_ ( ( F ` x ) - ( G ` x ) ) ) ) |
| 22 | 11 10 12 12 13 19 18 | ofrfval | |- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> ( G oR <_ F <-> A. x e. A ( G ` x ) <_ ( F ` x ) ) ) |
| 23 | 6 21 22 | 3bitr4d | |- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> ( ( A X. { 0 } ) oR <_ ( F oF - G ) <-> G oR <_ F ) ) |