This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a pointwise operation on two functions defined using maps-to notation. (Contributed by Stefan O'Rear, 5-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ofmpteq | |- ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) -> ( ( x e. A |-> B ) oF R ( x e. A |-> C ) ) = ( x e. A |-> ( B R C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) -> A e. V ) |
|
| 2 | simpr | |- ( ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) /\ a e. A ) -> a e. A ) |
|
| 3 | simpl2 | |- ( ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) /\ a e. A ) -> ( x e. A |-> B ) Fn A ) |
|
| 4 | eqid | |- ( x e. A |-> B ) = ( x e. A |-> B ) |
|
| 5 | 4 | mptfng | |- ( A. x e. A B e. _V <-> ( x e. A |-> B ) Fn A ) |
| 6 | 3 5 | sylibr | |- ( ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) /\ a e. A ) -> A. x e. A B e. _V ) |
| 7 | nfcsb1v | |- F/_ x [_ a / x ]_ B |
|
| 8 | 7 | nfel1 | |- F/ x [_ a / x ]_ B e. _V |
| 9 | csbeq1a | |- ( x = a -> B = [_ a / x ]_ B ) |
|
| 10 | 9 | eleq1d | |- ( x = a -> ( B e. _V <-> [_ a / x ]_ B e. _V ) ) |
| 11 | 8 10 | rspc | |- ( a e. A -> ( A. x e. A B e. _V -> [_ a / x ]_ B e. _V ) ) |
| 12 | 2 6 11 | sylc | |- ( ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) /\ a e. A ) -> [_ a / x ]_ B e. _V ) |
| 13 | simpl3 | |- ( ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) /\ a e. A ) -> ( x e. A |-> C ) Fn A ) |
|
| 14 | eqid | |- ( x e. A |-> C ) = ( x e. A |-> C ) |
|
| 15 | 14 | mptfng | |- ( A. x e. A C e. _V <-> ( x e. A |-> C ) Fn A ) |
| 16 | 13 15 | sylibr | |- ( ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) /\ a e. A ) -> A. x e. A C e. _V ) |
| 17 | nfcsb1v | |- F/_ x [_ a / x ]_ C |
|
| 18 | 17 | nfel1 | |- F/ x [_ a / x ]_ C e. _V |
| 19 | csbeq1a | |- ( x = a -> C = [_ a / x ]_ C ) |
|
| 20 | 19 | eleq1d | |- ( x = a -> ( C e. _V <-> [_ a / x ]_ C e. _V ) ) |
| 21 | 18 20 | rspc | |- ( a e. A -> ( A. x e. A C e. _V -> [_ a / x ]_ C e. _V ) ) |
| 22 | 2 16 21 | sylc | |- ( ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) /\ a e. A ) -> [_ a / x ]_ C e. _V ) |
| 23 | nfcv | |- F/_ a B |
|
| 24 | 23 7 9 | cbvmpt | |- ( x e. A |-> B ) = ( a e. A |-> [_ a / x ]_ B ) |
| 25 | 24 | a1i | |- ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) -> ( x e. A |-> B ) = ( a e. A |-> [_ a / x ]_ B ) ) |
| 26 | nfcv | |- F/_ a C |
|
| 27 | 26 17 19 | cbvmpt | |- ( x e. A |-> C ) = ( a e. A |-> [_ a / x ]_ C ) |
| 28 | 27 | a1i | |- ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) -> ( x e. A |-> C ) = ( a e. A |-> [_ a / x ]_ C ) ) |
| 29 | 1 12 22 25 28 | offval2 | |- ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) -> ( ( x e. A |-> B ) oF R ( x e. A |-> C ) ) = ( a e. A |-> ( [_ a / x ]_ B R [_ a / x ]_ C ) ) ) |
| 30 | nfcv | |- F/_ a ( B R C ) |
|
| 31 | nfcv | |- F/_ x R |
|
| 32 | 7 31 17 | nfov | |- F/_ x ( [_ a / x ]_ B R [_ a / x ]_ C ) |
| 33 | 9 19 | oveq12d | |- ( x = a -> ( B R C ) = ( [_ a / x ]_ B R [_ a / x ]_ C ) ) |
| 34 | 30 32 33 | cbvmpt | |- ( x e. A |-> ( B R C ) ) = ( a e. A |-> ( [_ a / x ]_ B R [_ a / x ]_ C ) ) |
| 35 | 29 34 | eqtr4di | |- ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) -> ( ( x e. A |-> B ) oF R ( x e. A |-> C ) ) = ( x e. A |-> ( B R C ) ) ) |