This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a pointwise operation on two functions defined using maps-to notation. (Contributed by Stefan O'Rear, 5-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ofmpteq | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∘f 𝑅 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) → 𝐴 ∈ 𝑉 ) | |
| 2 | simpr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ 𝐴 ) | |
| 3 | simpl2 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) | |
| 4 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 5 | 4 | mptfng | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
| 6 | 3 5 | sylibr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 7 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 | |
| 8 | 7 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ V |
| 9 | csbeq1a | ⊢ ( 𝑥 = 𝑎 → 𝐵 = ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) | |
| 10 | 9 | eleq1d | ⊢ ( 𝑥 = 𝑎 → ( 𝐵 ∈ V ↔ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ V ) ) |
| 11 | 8 10 | rspc | ⊢ ( 𝑎 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ V ) ) |
| 12 | 2 6 11 | sylc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ V ) |
| 13 | simpl3 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) | |
| 14 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) | |
| 15 | 14 | mptfng | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ V ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) |
| 16 | 13 15 | sylibr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ V ) |
| 17 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐶 | |
| 18 | 17 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ∈ V |
| 19 | csbeq1a | ⊢ ( 𝑥 = 𝑎 → 𝐶 = ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) | |
| 20 | 19 | eleq1d | ⊢ ( 𝑥 = 𝑎 → ( 𝐶 ∈ V ↔ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ∈ V ) ) |
| 21 | 18 20 | rspc | ⊢ ( 𝑎 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ V → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ∈ V ) ) |
| 22 | 2 16 21 | sylc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ∈ V ) |
| 23 | nfcv | ⊢ Ⅎ 𝑎 𝐵 | |
| 24 | 23 7 9 | cbvmpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑎 ∈ 𝐴 ↦ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
| 25 | 24 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑎 ∈ 𝐴 ↦ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
| 26 | nfcv | ⊢ Ⅎ 𝑎 𝐶 | |
| 27 | 26 17 19 | cbvmpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑎 ∈ 𝐴 ↦ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
| 28 | 27 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑎 ∈ 𝐴 ↦ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) ) |
| 29 | 1 12 22 25 28 | offval2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∘f 𝑅 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝑎 ∈ 𝐴 ↦ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 𝑅 ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) ) ) |
| 30 | nfcv | ⊢ Ⅎ 𝑎 ( 𝐵 𝑅 𝐶 ) | |
| 31 | nfcv | ⊢ Ⅎ 𝑥 𝑅 | |
| 32 | 7 31 17 | nfov | ⊢ Ⅎ 𝑥 ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 𝑅 ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
| 33 | 9 19 | oveq12d | ⊢ ( 𝑥 = 𝑎 → ( 𝐵 𝑅 𝐶 ) = ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 𝑅 ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) ) |
| 34 | 30 32 33 | cbvmpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) = ( 𝑎 ∈ 𝐴 ↦ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 𝑅 ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) ) |
| 35 | 29 34 | eqtr4di | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∘f 𝑅 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) ) |