This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the function operation map oF by the functions defined in fsplit and fpar . (Contributed by AV, 4-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsplitfpar.h | |- H = ( ( `' ( 1st |` ( _V X. _V ) ) o. ( F o. ( 1st |` ( _V X. _V ) ) ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( G o. ( 2nd |` ( _V X. _V ) ) ) ) ) |
|
| fsplitfpar.s | |- S = ( `' ( 1st |` _I ) |` A ) |
||
| Assertion | offsplitfpar | |- ( ( ( F Fn A /\ G Fn A ) /\ ( F e. V /\ G e. W ) /\ ( .+ Fn C /\ ( ran F X. ran G ) C_ C ) ) -> ( .+ o. ( H o. S ) ) = ( F oF .+ G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsplitfpar.h | |- H = ( ( `' ( 1st |` ( _V X. _V ) ) o. ( F o. ( 1st |` ( _V X. _V ) ) ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( G o. ( 2nd |` ( _V X. _V ) ) ) ) ) |
|
| 2 | fsplitfpar.s | |- S = ( `' ( 1st |` _I ) |` A ) |
|
| 3 | 1 2 | fsplitfpar | |- ( ( F Fn A /\ G Fn A ) -> ( H o. S ) = ( a e. A |-> <. ( F ` a ) , ( G ` a ) >. ) ) |
| 4 | 3 | coeq2d | |- ( ( F Fn A /\ G Fn A ) -> ( .+ o. ( H o. S ) ) = ( .+ o. ( a e. A |-> <. ( F ` a ) , ( G ` a ) >. ) ) ) |
| 5 | 4 | 3ad2ant1 | |- ( ( ( F Fn A /\ G Fn A ) /\ ( F e. V /\ G e. W ) /\ ( .+ Fn C /\ ( ran F X. ran G ) C_ C ) ) -> ( .+ o. ( H o. S ) ) = ( .+ o. ( a e. A |-> <. ( F ` a ) , ( G ` a ) >. ) ) ) |
| 6 | dffn3 | |- ( .+ Fn C <-> .+ : C --> ran .+ ) |
|
| 7 | 6 | biimpi | |- ( .+ Fn C -> .+ : C --> ran .+ ) |
| 8 | 7 | adantr | |- ( ( .+ Fn C /\ ( ran F X. ran G ) C_ C ) -> .+ : C --> ran .+ ) |
| 9 | 8 | 3ad2ant3 | |- ( ( ( F Fn A /\ G Fn A ) /\ ( F e. V /\ G e. W ) /\ ( .+ Fn C /\ ( ran F X. ran G ) C_ C ) ) -> .+ : C --> ran .+ ) |
| 10 | simpl3r | |- ( ( ( ( F Fn A /\ G Fn A ) /\ ( F e. V /\ G e. W ) /\ ( .+ Fn C /\ ( ran F X. ran G ) C_ C ) ) /\ a e. A ) -> ( ran F X. ran G ) C_ C ) |
|
| 11 | simp1l | |- ( ( ( F Fn A /\ G Fn A ) /\ ( F e. V /\ G e. W ) /\ ( .+ Fn C /\ ( ran F X. ran G ) C_ C ) ) -> F Fn A ) |
|
| 12 | fnfvelrn | |- ( ( F Fn A /\ a e. A ) -> ( F ` a ) e. ran F ) |
|
| 13 | 11 12 | sylan | |- ( ( ( ( F Fn A /\ G Fn A ) /\ ( F e. V /\ G e. W ) /\ ( .+ Fn C /\ ( ran F X. ran G ) C_ C ) ) /\ a e. A ) -> ( F ` a ) e. ran F ) |
| 14 | simp1r | |- ( ( ( F Fn A /\ G Fn A ) /\ ( F e. V /\ G e. W ) /\ ( .+ Fn C /\ ( ran F X. ran G ) C_ C ) ) -> G Fn A ) |
|
| 15 | fnfvelrn | |- ( ( G Fn A /\ a e. A ) -> ( G ` a ) e. ran G ) |
|
| 16 | 14 15 | sylan | |- ( ( ( ( F Fn A /\ G Fn A ) /\ ( F e. V /\ G e. W ) /\ ( .+ Fn C /\ ( ran F X. ran G ) C_ C ) ) /\ a e. A ) -> ( G ` a ) e. ran G ) |
| 17 | 13 16 | opelxpd | |- ( ( ( ( F Fn A /\ G Fn A ) /\ ( F e. V /\ G e. W ) /\ ( .+ Fn C /\ ( ran F X. ran G ) C_ C ) ) /\ a e. A ) -> <. ( F ` a ) , ( G ` a ) >. e. ( ran F X. ran G ) ) |
| 18 | 10 17 | sseldd | |- ( ( ( ( F Fn A /\ G Fn A ) /\ ( F e. V /\ G e. W ) /\ ( .+ Fn C /\ ( ran F X. ran G ) C_ C ) ) /\ a e. A ) -> <. ( F ` a ) , ( G ` a ) >. e. C ) |
| 19 | 9 18 | cofmpt | |- ( ( ( F Fn A /\ G Fn A ) /\ ( F e. V /\ G e. W ) /\ ( .+ Fn C /\ ( ran F X. ran G ) C_ C ) ) -> ( .+ o. ( a e. A |-> <. ( F ` a ) , ( G ` a ) >. ) ) = ( a e. A |-> ( .+ ` <. ( F ` a ) , ( G ` a ) >. ) ) ) |
| 20 | df-ov | |- ( ( F ` a ) .+ ( G ` a ) ) = ( .+ ` <. ( F ` a ) , ( G ` a ) >. ) |
|
| 21 | 20 | eqcomi | |- ( .+ ` <. ( F ` a ) , ( G ` a ) >. ) = ( ( F ` a ) .+ ( G ` a ) ) |
| 22 | 21 | mpteq2i | |- ( a e. A |-> ( .+ ` <. ( F ` a ) , ( G ` a ) >. ) ) = ( a e. A |-> ( ( F ` a ) .+ ( G ` a ) ) ) |
| 23 | 19 22 | eqtrdi | |- ( ( ( F Fn A /\ G Fn A ) /\ ( F e. V /\ G e. W ) /\ ( .+ Fn C /\ ( ran F X. ran G ) C_ C ) ) -> ( .+ o. ( a e. A |-> <. ( F ` a ) , ( G ` a ) >. ) ) = ( a e. A |-> ( ( F ` a ) .+ ( G ` a ) ) ) ) |
| 24 | offval3 | |- ( ( F e. V /\ G e. W ) -> ( F oF .+ G ) = ( a e. ( dom F i^i dom G ) |-> ( ( F ` a ) .+ ( G ` a ) ) ) ) |
|
| 25 | fndm | |- ( F Fn A -> dom F = A ) |
|
| 26 | fndm | |- ( G Fn A -> dom G = A ) |
|
| 27 | 25 26 | ineqan12d | |- ( ( F Fn A /\ G Fn A ) -> ( dom F i^i dom G ) = ( A i^i A ) ) |
| 28 | inidm | |- ( A i^i A ) = A |
|
| 29 | 27 28 | eqtrdi | |- ( ( F Fn A /\ G Fn A ) -> ( dom F i^i dom G ) = A ) |
| 30 | 29 | mpteq1d | |- ( ( F Fn A /\ G Fn A ) -> ( a e. ( dom F i^i dom G ) |-> ( ( F ` a ) .+ ( G ` a ) ) ) = ( a e. A |-> ( ( F ` a ) .+ ( G ` a ) ) ) ) |
| 31 | 24 30 | sylan9eqr | |- ( ( ( F Fn A /\ G Fn A ) /\ ( F e. V /\ G e. W ) ) -> ( F oF .+ G ) = ( a e. A |-> ( ( F ` a ) .+ ( G ` a ) ) ) ) |
| 32 | 31 | eqcomd | |- ( ( ( F Fn A /\ G Fn A ) /\ ( F e. V /\ G e. W ) ) -> ( a e. A |-> ( ( F ` a ) .+ ( G ` a ) ) ) = ( F oF .+ G ) ) |
| 33 | 32 | 3adant3 | |- ( ( ( F Fn A /\ G Fn A ) /\ ( F e. V /\ G e. W ) /\ ( .+ Fn C /\ ( ran F X. ran G ) C_ C ) ) -> ( a e. A |-> ( ( F ` a ) .+ ( G ` a ) ) ) = ( F oF .+ G ) ) |
| 34 | 5 23 33 | 3eqtrd | |- ( ( ( F Fn A /\ G Fn A ) /\ ( F e. V /\ G e. W ) /\ ( .+ Fn C /\ ( ran F X. ran G ) C_ C ) ) -> ( .+ o. ( H o. S ) ) = ( F oF .+ G ) ) |