This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the ordinal exponentiation operation. (Contributed by NM, 30-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-oexp | |- ^o = ( x e. On , y e. On |-> if ( x = (/) , ( 1o \ y ) , ( rec ( ( z e. _V |-> ( z .o x ) ) , 1o ) ` y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | coe | |- ^o |
|
| 1 | vx | |- x |
|
| 2 | con0 | |- On |
|
| 3 | vy | |- y |
|
| 4 | 1 | cv | |- x |
| 5 | c0 | |- (/) |
|
| 6 | 4 5 | wceq | |- x = (/) |
| 7 | c1o | |- 1o |
|
| 8 | 3 | cv | |- y |
| 9 | 7 8 | cdif | |- ( 1o \ y ) |
| 10 | vz | |- z |
|
| 11 | cvv | |- _V |
|
| 12 | 10 | cv | |- z |
| 13 | comu | |- .o |
|
| 14 | 12 4 13 | co | |- ( z .o x ) |
| 15 | 10 11 14 | cmpt | |- ( z e. _V |-> ( z .o x ) ) |
| 16 | 15 7 | crdg | |- rec ( ( z e. _V |-> ( z .o x ) ) , 1o ) |
| 17 | 8 16 | cfv | |- ( rec ( ( z e. _V |-> ( z .o x ) ) , 1o ) ` y ) |
| 18 | 6 9 17 | cif | |- if ( x = (/) , ( 1o \ y ) , ( rec ( ( z e. _V |-> ( z .o x ) ) , 1o ) ` y ) ) |
| 19 | 1 3 2 2 18 | cmpo | |- ( x e. On , y e. On |-> if ( x = (/) , ( 1o \ y ) , ( rec ( ( z e. _V |-> ( z .o x ) ) , 1o ) ` y ) ) ) |
| 20 | 0 19 | wceq | |- ^o = ( x e. On , y e. On |-> if ( x = (/) , ( 1o \ y ) , ( rec ( ( z e. _V |-> ( z .o x ) ) , 1o ) ` y ) ) ) |