This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the relation T . (Contributed by Mario Carneiro, 28-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | |- S = dom ( A CNF B ) |
|
| cantnfs.a | |- ( ph -> A e. On ) |
||
| cantnfs.b | |- ( ph -> B e. On ) |
||
| oemapval.t | |- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
||
| oemapval.f | |- ( ph -> F e. S ) |
||
| oemapval.g | |- ( ph -> G e. S ) |
||
| Assertion | oemapval | |- ( ph -> ( F T G <-> E. z e. B ( ( F ` z ) e. ( G ` z ) /\ A. w e. B ( z e. w -> ( F ` w ) = ( G ` w ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | |- S = dom ( A CNF B ) |
|
| 2 | cantnfs.a | |- ( ph -> A e. On ) |
|
| 3 | cantnfs.b | |- ( ph -> B e. On ) |
|
| 4 | oemapval.t | |- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
|
| 5 | oemapval.f | |- ( ph -> F e. S ) |
|
| 6 | oemapval.g | |- ( ph -> G e. S ) |
|
| 7 | fveq1 | |- ( x = F -> ( x ` z ) = ( F ` z ) ) |
|
| 8 | fveq1 | |- ( y = G -> ( y ` z ) = ( G ` z ) ) |
|
| 9 | eleq12 | |- ( ( ( x ` z ) = ( F ` z ) /\ ( y ` z ) = ( G ` z ) ) -> ( ( x ` z ) e. ( y ` z ) <-> ( F ` z ) e. ( G ` z ) ) ) |
|
| 10 | 7 8 9 | syl2an | |- ( ( x = F /\ y = G ) -> ( ( x ` z ) e. ( y ` z ) <-> ( F ` z ) e. ( G ` z ) ) ) |
| 11 | fveq1 | |- ( x = F -> ( x ` w ) = ( F ` w ) ) |
|
| 12 | fveq1 | |- ( y = G -> ( y ` w ) = ( G ` w ) ) |
|
| 13 | 11 12 | eqeqan12d | |- ( ( x = F /\ y = G ) -> ( ( x ` w ) = ( y ` w ) <-> ( F ` w ) = ( G ` w ) ) ) |
| 14 | 13 | imbi2d | |- ( ( x = F /\ y = G ) -> ( ( z e. w -> ( x ` w ) = ( y ` w ) ) <-> ( z e. w -> ( F ` w ) = ( G ` w ) ) ) ) |
| 15 | 14 | ralbidv | |- ( ( x = F /\ y = G ) -> ( A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) <-> A. w e. B ( z e. w -> ( F ` w ) = ( G ` w ) ) ) ) |
| 16 | 10 15 | anbi12d | |- ( ( x = F /\ y = G ) -> ( ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) <-> ( ( F ` z ) e. ( G ` z ) /\ A. w e. B ( z e. w -> ( F ` w ) = ( G ` w ) ) ) ) ) |
| 17 | 16 | rexbidv | |- ( ( x = F /\ y = G ) -> ( E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) <-> E. z e. B ( ( F ` z ) e. ( G ` z ) /\ A. w e. B ( z e. w -> ( F ` w ) = ( G ` w ) ) ) ) ) |
| 18 | 17 4 | brabga | |- ( ( F e. S /\ G e. S ) -> ( F T G <-> E. z e. B ( ( F ` z ) e. ( G ` z ) /\ A. w e. B ( z e. w -> ( F ` w ) = ( G ` w ) ) ) ) ) |
| 19 | 5 6 18 | syl2anc | |- ( ph -> ( F T G <-> E. z e. B ( ( F ` z ) e. ( G ` z ) /\ A. w e. B ( z e. w -> ( F ` w ) = ( G ` w ) ) ) ) ) |