This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Stefan O'Rear, 5-Sep-2015) (Revised by AV, 5-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odval.1 | |- X = ( Base ` G ) |
|
| odval.2 | |- .x. = ( .g ` G ) |
||
| odval.3 | |- .0. = ( 0g ` G ) |
||
| odval.4 | |- O = ( od ` G ) |
||
| odval.i | |- I = { y e. NN | ( y .x. A ) = .0. } |
||
| Assertion | odlem1 | |- ( A e. X -> ( ( ( O ` A ) = 0 /\ I = (/) ) \/ ( O ` A ) e. I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odval.1 | |- X = ( Base ` G ) |
|
| 2 | odval.2 | |- .x. = ( .g ` G ) |
|
| 3 | odval.3 | |- .0. = ( 0g ` G ) |
|
| 4 | odval.4 | |- O = ( od ` G ) |
|
| 5 | odval.i | |- I = { y e. NN | ( y .x. A ) = .0. } |
|
| 6 | 1 2 3 4 5 | odval | |- ( A e. X -> ( O ` A ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) ) |
| 7 | eqeq2 | |- ( 0 = if ( I = (/) , 0 , inf ( I , RR , < ) ) -> ( ( O ` A ) = 0 <-> ( O ` A ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) ) ) |
|
| 8 | 7 | imbi1d | |- ( 0 = if ( I = (/) , 0 , inf ( I , RR , < ) ) -> ( ( ( O ` A ) = 0 -> ( ( ( O ` A ) = 0 /\ I = (/) ) \/ ( O ` A ) e. I ) ) <-> ( ( O ` A ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) -> ( ( ( O ` A ) = 0 /\ I = (/) ) \/ ( O ` A ) e. I ) ) ) ) |
| 9 | eqeq2 | |- ( inf ( I , RR , < ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) -> ( ( O ` A ) = inf ( I , RR , < ) <-> ( O ` A ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) ) ) |
|
| 10 | 9 | imbi1d | |- ( inf ( I , RR , < ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) -> ( ( ( O ` A ) = inf ( I , RR , < ) -> ( ( ( O ` A ) = 0 /\ I = (/) ) \/ ( O ` A ) e. I ) ) <-> ( ( O ` A ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) -> ( ( ( O ` A ) = 0 /\ I = (/) ) \/ ( O ` A ) e. I ) ) ) ) |
| 11 | orc | |- ( ( ( O ` A ) = 0 /\ I = (/) ) -> ( ( ( O ` A ) = 0 /\ I = (/) ) \/ ( O ` A ) e. I ) ) |
|
| 12 | 11 | expcom | |- ( I = (/) -> ( ( O ` A ) = 0 -> ( ( ( O ` A ) = 0 /\ I = (/) ) \/ ( O ` A ) e. I ) ) ) |
| 13 | 12 | adantl | |- ( ( A e. X /\ I = (/) ) -> ( ( O ` A ) = 0 -> ( ( ( O ` A ) = 0 /\ I = (/) ) \/ ( O ` A ) e. I ) ) ) |
| 14 | ssrab2 | |- { y e. NN | ( y .x. A ) = .0. } C_ NN |
|
| 15 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 16 | 15 | eqcomi | |- ( ZZ>= ` 1 ) = NN |
| 17 | 14 5 16 | 3sstr4i | |- I C_ ( ZZ>= ` 1 ) |
| 18 | neqne | |- ( -. I = (/) -> I =/= (/) ) |
|
| 19 | 18 | adantl | |- ( ( A e. X /\ -. I = (/) ) -> I =/= (/) ) |
| 20 | infssuzcl | |- ( ( I C_ ( ZZ>= ` 1 ) /\ I =/= (/) ) -> inf ( I , RR , < ) e. I ) |
|
| 21 | 17 19 20 | sylancr | |- ( ( A e. X /\ -. I = (/) ) -> inf ( I , RR , < ) e. I ) |
| 22 | eleq1a | |- ( inf ( I , RR , < ) e. I -> ( ( O ` A ) = inf ( I , RR , < ) -> ( O ` A ) e. I ) ) |
|
| 23 | 21 22 | syl | |- ( ( A e. X /\ -. I = (/) ) -> ( ( O ` A ) = inf ( I , RR , < ) -> ( O ` A ) e. I ) ) |
| 24 | olc | |- ( ( O ` A ) e. I -> ( ( ( O ` A ) = 0 /\ I = (/) ) \/ ( O ` A ) e. I ) ) |
|
| 25 | 23 24 | syl6 | |- ( ( A e. X /\ -. I = (/) ) -> ( ( O ` A ) = inf ( I , RR , < ) -> ( ( ( O ` A ) = 0 /\ I = (/) ) \/ ( O ` A ) e. I ) ) ) |
| 26 | 8 10 13 25 | ifbothda | |- ( A e. X -> ( ( O ` A ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) -> ( ( ( O ` A ) = 0 /\ I = (/) ) \/ ( O ` A ) e. I ) ) ) |
| 27 | 6 26 | mpd | |- ( A e. X -> ( ( ( O ` A ) = 0 /\ I = (/) ) \/ ( O ` A ) e. I ) ) |