This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the orthocomplement function in a given set (which usually is a pre-Hilbert space): it associates with a subset its orthogonal subset (which in the case of a closed linear subspace is its orthocomplement). (Contributed by NM, 7-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ocv | |- ocv = ( h e. _V |-> ( s e. ~P ( Base ` h ) |-> { x e. ( Base ` h ) | A. y e. s ( x ( .i ` h ) y ) = ( 0g ` ( Scalar ` h ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cocv | |- ocv |
|
| 1 | vh | |- h |
|
| 2 | cvv | |- _V |
|
| 3 | vs | |- s |
|
| 4 | cbs | |- Base |
|
| 5 | 1 | cv | |- h |
| 6 | 5 4 | cfv | |- ( Base ` h ) |
| 7 | 6 | cpw | |- ~P ( Base ` h ) |
| 8 | vx | |- x |
|
| 9 | vy | |- y |
|
| 10 | 3 | cv | |- s |
| 11 | 8 | cv | |- x |
| 12 | cip | |- .i |
|
| 13 | 5 12 | cfv | |- ( .i ` h ) |
| 14 | 9 | cv | |- y |
| 15 | 11 14 13 | co | |- ( x ( .i ` h ) y ) |
| 16 | c0g | |- 0g |
|
| 17 | csca | |- Scalar |
|
| 18 | 5 17 | cfv | |- ( Scalar ` h ) |
| 19 | 18 16 | cfv | |- ( 0g ` ( Scalar ` h ) ) |
| 20 | 15 19 | wceq | |- ( x ( .i ` h ) y ) = ( 0g ` ( Scalar ` h ) ) |
| 21 | 20 9 10 | wral | |- A. y e. s ( x ( .i ` h ) y ) = ( 0g ` ( Scalar ` h ) ) |
| 22 | 21 8 6 | crab | |- { x e. ( Base ` h ) | A. y e. s ( x ( .i ` h ) y ) = ( 0g ` ( Scalar ` h ) ) } |
| 23 | 3 7 22 | cmpt | |- ( s e. ~P ( Base ` h ) |-> { x e. ( Base ` h ) | A. y e. s ( x ( .i ` h ) y ) = ( 0g ` ( Scalar ` h ) ) } ) |
| 24 | 1 2 23 | cmpt | |- ( h e. _V |-> ( s e. ~P ( Base ` h ) |-> { x e. ( Base ` h ) | A. y e. s ( x ( .i ` h ) y ) = ( 0g ` ( Scalar ` h ) ) } ) ) |
| 25 | 0 24 | wceq | |- ocv = ( h e. _V |-> ( s e. ~P ( Base ` h ) |-> { x e. ( Base ` h ) | A. y e. s ( x ( .i ` h ) y ) = ( 0g ` ( Scalar ` h ) ) } ) ) |