This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence theorem for ordering of ordinal sum. Similar to Proposition 4.34(f) of Mendelson p. 266 and its converse. (Contributed by NM, 12-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oaordex | |- ( ( A e. On /\ B e. On ) -> ( A e. B <-> E. x e. On ( (/) e. x /\ ( A +o x ) = B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onelss | |- ( B e. On -> ( A e. B -> A C_ B ) ) |
|
| 2 | 1 | adantl | |- ( ( A e. On /\ B e. On ) -> ( A e. B -> A C_ B ) ) |
| 3 | oawordex | |- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> E. x e. On ( A +o x ) = B ) ) |
|
| 4 | 2 3 | sylibd | |- ( ( A e. On /\ B e. On ) -> ( A e. B -> E. x e. On ( A +o x ) = B ) ) |
| 5 | oaord1 | |- ( ( A e. On /\ x e. On ) -> ( (/) e. x <-> A e. ( A +o x ) ) ) |
|
| 6 | eleq2 | |- ( ( A +o x ) = B -> ( A e. ( A +o x ) <-> A e. B ) ) |
|
| 7 | 5 6 | sylan9bb | |- ( ( ( A e. On /\ x e. On ) /\ ( A +o x ) = B ) -> ( (/) e. x <-> A e. B ) ) |
| 8 | 7 | biimprcd | |- ( A e. B -> ( ( ( A e. On /\ x e. On ) /\ ( A +o x ) = B ) -> (/) e. x ) ) |
| 9 | 8 | exp4c | |- ( A e. B -> ( A e. On -> ( x e. On -> ( ( A +o x ) = B -> (/) e. x ) ) ) ) |
| 10 | 9 | com12 | |- ( A e. On -> ( A e. B -> ( x e. On -> ( ( A +o x ) = B -> (/) e. x ) ) ) ) |
| 11 | 10 | imp4b | |- ( ( A e. On /\ A e. B ) -> ( ( x e. On /\ ( A +o x ) = B ) -> (/) e. x ) ) |
| 12 | simpr | |- ( ( x e. On /\ ( A +o x ) = B ) -> ( A +o x ) = B ) |
|
| 13 | 11 12 | jca2 | |- ( ( A e. On /\ A e. B ) -> ( ( x e. On /\ ( A +o x ) = B ) -> ( (/) e. x /\ ( A +o x ) = B ) ) ) |
| 14 | 13 | expd | |- ( ( A e. On /\ A e. B ) -> ( x e. On -> ( ( A +o x ) = B -> ( (/) e. x /\ ( A +o x ) = B ) ) ) ) |
| 15 | 14 | reximdvai | |- ( ( A e. On /\ A e. B ) -> ( E. x e. On ( A +o x ) = B -> E. x e. On ( (/) e. x /\ ( A +o x ) = B ) ) ) |
| 16 | 15 | ex | |- ( A e. On -> ( A e. B -> ( E. x e. On ( A +o x ) = B -> E. x e. On ( (/) e. x /\ ( A +o x ) = B ) ) ) ) |
| 17 | 16 | adantr | |- ( ( A e. On /\ B e. On ) -> ( A e. B -> ( E. x e. On ( A +o x ) = B -> E. x e. On ( (/) e. x /\ ( A +o x ) = B ) ) ) ) |
| 18 | 4 17 | mpdd | |- ( ( A e. On /\ B e. On ) -> ( A e. B -> E. x e. On ( (/) e. x /\ ( A +o x ) = B ) ) ) |
| 19 | 7 | biimpd | |- ( ( ( A e. On /\ x e. On ) /\ ( A +o x ) = B ) -> ( (/) e. x -> A e. B ) ) |
| 20 | 19 | exp31 | |- ( A e. On -> ( x e. On -> ( ( A +o x ) = B -> ( (/) e. x -> A e. B ) ) ) ) |
| 21 | 20 | com34 | |- ( A e. On -> ( x e. On -> ( (/) e. x -> ( ( A +o x ) = B -> A e. B ) ) ) ) |
| 22 | 21 | imp4a | |- ( A e. On -> ( x e. On -> ( ( (/) e. x /\ ( A +o x ) = B ) -> A e. B ) ) ) |
| 23 | 22 | rexlimdv | |- ( A e. On -> ( E. x e. On ( (/) e. x /\ ( A +o x ) = B ) -> A e. B ) ) |
| 24 | 23 | adantr | |- ( ( A e. On /\ B e. On ) -> ( E. x e. On ( (/) e. x /\ ( A +o x ) = B ) -> A e. B ) ) |
| 25 | 18 24 | impbid | |- ( ( A e. On /\ B e. On ) -> ( A e. B <-> E. x e. On ( (/) e. x /\ ( A +o x ) = B ) ) ) |