This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence theorem for ordering of ordinal sum. Similar to Proposition 4.34(f) of Mendelson p. 266 and its converse. (Contributed by NM, 12-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oaordex | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ∈ On ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onelss | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵 ) ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
| 3 | oawordex | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) ) | |
| 4 | 2 3 | sylibd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 → ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) ) |
| 5 | oaord1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( ∅ ∈ 𝑥 ↔ 𝐴 ∈ ( 𝐴 +o 𝑥 ) ) ) | |
| 6 | eleq2 | ⊢ ( ( 𝐴 +o 𝑥 ) = 𝐵 → ( 𝐴 ∈ ( 𝐴 +o 𝑥 ) ↔ 𝐴 ∈ 𝐵 ) ) | |
| 7 | 5 6 | sylan9bb | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → ( ∅ ∈ 𝑥 ↔ 𝐴 ∈ 𝐵 ) ) |
| 8 | 7 | biimprcd | ⊢ ( 𝐴 ∈ 𝐵 → ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → ∅ ∈ 𝑥 ) ) |
| 9 | 8 | exp4c | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ On → ( 𝑥 ∈ On → ( ( 𝐴 +o 𝑥 ) = 𝐵 → ∅ ∈ 𝑥 ) ) ) ) |
| 10 | 9 | com12 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ∈ 𝐵 → ( 𝑥 ∈ On → ( ( 𝐴 +o 𝑥 ) = 𝐵 → ∅ ∈ 𝑥 ) ) ) ) |
| 11 | 10 | imp4b | ⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝑥 ∈ On ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → ∅ ∈ 𝑥 ) ) |
| 12 | simpr | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → ( 𝐴 +o 𝑥 ) = 𝐵 ) | |
| 13 | 11 12 | jca2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝑥 ∈ On ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
| 14 | 13 | expd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( 𝑥 ∈ On → ( ( 𝐴 +o 𝑥 ) = 𝐵 → ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) ) |
| 15 | 14 | reximdvai | ⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 → ∃ 𝑥 ∈ On ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
| 16 | 15 | ex | ⊢ ( 𝐴 ∈ On → ( 𝐴 ∈ 𝐵 → ( ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 → ∃ 𝑥 ∈ On ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 → ∃ 𝑥 ∈ On ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) ) |
| 18 | 4 17 | mpdd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 → ∃ 𝑥 ∈ On ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
| 19 | 7 | biimpd | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → ( ∅ ∈ 𝑥 → 𝐴 ∈ 𝐵 ) ) |
| 20 | 19 | exp31 | ⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ On → ( ( 𝐴 +o 𝑥 ) = 𝐵 → ( ∅ ∈ 𝑥 → 𝐴 ∈ 𝐵 ) ) ) ) |
| 21 | 20 | com34 | ⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ On → ( ∅ ∈ 𝑥 → ( ( 𝐴 +o 𝑥 ) = 𝐵 → 𝐴 ∈ 𝐵 ) ) ) ) |
| 22 | 21 | imp4a | ⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ On → ( ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → 𝐴 ∈ 𝐵 ) ) ) |
| 23 | 22 | rexlimdv | ⊢ ( 𝐴 ∈ On → ( ∃ 𝑥 ∈ On ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑥 ∈ On ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
| 25 | 18 24 | impbid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ∈ On ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |