This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | o1add2.1 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| o1add2.2 | |- ( ( ph /\ x e. A ) -> C e. V ) |
||
| o1add2.3 | |- ( ph -> ( x e. A |-> B ) e. O(1) ) |
||
| o1add2.4 | |- ( ph -> ( x e. A |-> C ) e. O(1) ) |
||
| Assertion | o1mul2 | |- ( ph -> ( x e. A |-> ( B x. C ) ) e. O(1) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o1add2.1 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| 2 | o1add2.2 | |- ( ( ph /\ x e. A ) -> C e. V ) |
|
| 3 | o1add2.3 | |- ( ph -> ( x e. A |-> B ) e. O(1) ) |
|
| 4 | o1add2.4 | |- ( ph -> ( x e. A |-> C ) e. O(1) ) |
|
| 5 | 1 | ralrimiva | |- ( ph -> A. x e. A B e. V ) |
| 6 | dmmptg | |- ( A. x e. A B e. V -> dom ( x e. A |-> B ) = A ) |
|
| 7 | 5 6 | syl | |- ( ph -> dom ( x e. A |-> B ) = A ) |
| 8 | o1dm | |- ( ( x e. A |-> B ) e. O(1) -> dom ( x e. A |-> B ) C_ RR ) |
|
| 9 | 3 8 | syl | |- ( ph -> dom ( x e. A |-> B ) C_ RR ) |
| 10 | 7 9 | eqsstrrd | |- ( ph -> A C_ RR ) |
| 11 | reex | |- RR e. _V |
|
| 12 | 11 | ssex | |- ( A C_ RR -> A e. _V ) |
| 13 | 10 12 | syl | |- ( ph -> A e. _V ) |
| 14 | eqidd | |- ( ph -> ( x e. A |-> B ) = ( x e. A |-> B ) ) |
|
| 15 | eqidd | |- ( ph -> ( x e. A |-> C ) = ( x e. A |-> C ) ) |
|
| 16 | 13 1 2 14 15 | offval2 | |- ( ph -> ( ( x e. A |-> B ) oF x. ( x e. A |-> C ) ) = ( x e. A |-> ( B x. C ) ) ) |
| 17 | o1mul | |- ( ( ( x e. A |-> B ) e. O(1) /\ ( x e. A |-> C ) e. O(1) ) -> ( ( x e. A |-> B ) oF x. ( x e. A |-> C ) ) e. O(1) ) |
|
| 18 | 3 4 17 | syl2anc | |- ( ph -> ( ( x e. A |-> B ) oF x. ( x e. A |-> C ) ) e. O(1) ) |
| 19 | 16 18 | eqeltrrd | |- ( ph -> ( x e. A |-> ( B x. C ) ) e. O(1) ) |