This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative law for the scalar product of a normed complex vector space. (Contributed by NM, 14-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvscl.1 | |- X = ( BaseSet ` U ) |
|
| nvscl.4 | |- S = ( .sOLD ` U ) |
||
| Assertion | nvscom | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. CC /\ C e. X ) ) -> ( A S ( B S C ) ) = ( B S ( A S C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvscl.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvscl.4 | |- S = ( .sOLD ` U ) |
|
| 3 | mulcom | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |
|
| 4 | 3 | oveq1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) S C ) = ( ( B x. A ) S C ) ) |
| 5 | 4 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ C e. X ) -> ( ( A x. B ) S C ) = ( ( B x. A ) S C ) ) |
| 6 | 5 | adantl | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. CC /\ C e. X ) ) -> ( ( A x. B ) S C ) = ( ( B x. A ) S C ) ) |
| 7 | 1 2 | nvsass | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. CC /\ C e. X ) ) -> ( ( A x. B ) S C ) = ( A S ( B S C ) ) ) |
| 8 | 3ancoma | |- ( ( A e. CC /\ B e. CC /\ C e. X ) <-> ( B e. CC /\ A e. CC /\ C e. X ) ) |
|
| 9 | 1 2 | nvsass | |- ( ( U e. NrmCVec /\ ( B e. CC /\ A e. CC /\ C e. X ) ) -> ( ( B x. A ) S C ) = ( B S ( A S C ) ) ) |
| 10 | 8 9 | sylan2b | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. CC /\ C e. X ) ) -> ( ( B x. A ) S C ) = ( B S ( A S C ) ) ) |
| 11 | 6 7 10 | 3eqtr3d | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. CC /\ C e. X ) ) -> ( A S ( B S C ) ) = ( B S ( A S C ) ) ) |