This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero vector is a right identity element. (Contributed by NM, 28-Nov-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nv0id.1 | |- X = ( BaseSet ` U ) |
|
| nv0id.2 | |- G = ( +v ` U ) |
||
| nv0id.6 | |- Z = ( 0vec ` U ) |
||
| Assertion | nv0rid | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A G Z ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nv0id.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nv0id.2 | |- G = ( +v ` U ) |
|
| 3 | nv0id.6 | |- Z = ( 0vec ` U ) |
|
| 4 | 2 3 | 0vfval | |- ( U e. NrmCVec -> Z = ( GId ` G ) ) |
| 5 | 4 | oveq2d | |- ( U e. NrmCVec -> ( A G Z ) = ( A G ( GId ` G ) ) ) |
| 6 | 5 | adantr | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A G Z ) = ( A G ( GId ` G ) ) ) |
| 7 | 2 | nvgrp | |- ( U e. NrmCVec -> G e. GrpOp ) |
| 8 | 1 2 | bafval | |- X = ran G |
| 9 | eqid | |- ( GId ` G ) = ( GId ` G ) |
|
| 10 | 8 9 | grporid | |- ( ( G e. GrpOp /\ A e. X ) -> ( A G ( GId ` G ) ) = A ) |
| 11 | 7 10 | sylan | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A G ( GId ` G ) ) = A ) |
| 12 | 6 11 | eqtrd | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A G Z ) = A ) |