This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The interior function on the subsets of a topology's base set. (Contributed by NM, 10-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cldval.1 | |- X = U. J |
|
| Assertion | ntrfval | |- ( J e. Top -> ( int ` J ) = ( x e. ~P X |-> U. ( J i^i ~P x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cldval.1 | |- X = U. J |
|
| 2 | 1 | topopn | |- ( J e. Top -> X e. J ) |
| 3 | pwexg | |- ( X e. J -> ~P X e. _V ) |
|
| 4 | mptexg | |- ( ~P X e. _V -> ( x e. ~P X |-> U. ( J i^i ~P x ) ) e. _V ) |
|
| 5 | 2 3 4 | 3syl | |- ( J e. Top -> ( x e. ~P X |-> U. ( J i^i ~P x ) ) e. _V ) |
| 6 | unieq | |- ( j = J -> U. j = U. J ) |
|
| 7 | 6 1 | eqtr4di | |- ( j = J -> U. j = X ) |
| 8 | 7 | pweqd | |- ( j = J -> ~P U. j = ~P X ) |
| 9 | ineq1 | |- ( j = J -> ( j i^i ~P x ) = ( J i^i ~P x ) ) |
|
| 10 | 9 | unieqd | |- ( j = J -> U. ( j i^i ~P x ) = U. ( J i^i ~P x ) ) |
| 11 | 8 10 | mpteq12dv | |- ( j = J -> ( x e. ~P U. j |-> U. ( j i^i ~P x ) ) = ( x e. ~P X |-> U. ( J i^i ~P x ) ) ) |
| 12 | df-ntr | |- int = ( j e. Top |-> ( x e. ~P U. j |-> U. ( j i^i ~P x ) ) ) |
|
| 13 | 11 12 | fvmptg | |- ( ( J e. Top /\ ( x e. ~P X |-> U. ( J i^i ~P x ) ) e. _V ) -> ( int ` J ) = ( x e. ~P X |-> U. ( J i^i ~P x ) ) ) |
| 14 | 5 13 | mpdan | |- ( J e. Top -> ( int ` J ) = ( x e. ~P X |-> U. ( J i^i ~P x ) ) ) |