This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for subtraction. (Contributed by Scott Fenton, 23-Jun-2013) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | npncan3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) + ( C - A ) ) = ( C - B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> A e. CC ) |
|
| 2 | subcl | |- ( ( C e. CC /\ A e. CC ) -> ( C - A ) e. CC ) |
|
| 3 | 2 | ancoms | |- ( ( A e. CC /\ C e. CC ) -> ( C - A ) e. CC ) |
| 4 | 3 | 3adant2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( C - A ) e. CC ) |
| 5 | simp2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> B e. CC ) |
|
| 6 | addsub | |- ( ( A e. CC /\ ( C - A ) e. CC /\ B e. CC ) -> ( ( A + ( C - A ) ) - B ) = ( ( A - B ) + ( C - A ) ) ) |
|
| 7 | 1 4 5 6 | syl3anc | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + ( C - A ) ) - B ) = ( ( A - B ) + ( C - A ) ) ) |
| 8 | pncan3 | |- ( ( A e. CC /\ C e. CC ) -> ( A + ( C - A ) ) = C ) |
|
| 9 | 8 | 3adant2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + ( C - A ) ) = C ) |
| 10 | 9 | oveq1d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + ( C - A ) ) - B ) = ( C - B ) ) |
| 11 | 7 10 | eqtr3d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) + ( C - A ) ) = ( C - B ) ) |