This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for subtraction. (Contributed by Scott Fenton, 23-Jun-2013) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | npncan3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) + ( 𝐶 − 𝐴 ) ) = ( 𝐶 − 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 2 | subcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐶 − 𝐴 ) ∈ ℂ ) | |
| 3 | 2 | ancoms | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 − 𝐴 ) ∈ ℂ ) |
| 4 | 3 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 − 𝐴 ) ∈ ℂ ) |
| 5 | simp2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 6 | addsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 − 𝐴 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + ( 𝐶 − 𝐴 ) ) − 𝐵 ) = ( ( 𝐴 − 𝐵 ) + ( 𝐶 − 𝐴 ) ) ) | |
| 7 | 1 4 5 6 | syl3anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + ( 𝐶 − 𝐴 ) ) − 𝐵 ) = ( ( 𝐴 − 𝐵 ) + ( 𝐶 − 𝐴 ) ) ) |
| 8 | pncan3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + ( 𝐶 − 𝐴 ) ) = 𝐶 ) | |
| 9 | 8 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + ( 𝐶 − 𝐴 ) ) = 𝐶 ) |
| 10 | 9 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + ( 𝐶 − 𝐴 ) ) − 𝐵 ) = ( 𝐶 − 𝐵 ) ) |
| 11 | 7 10 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) + ( 𝐶 − 𝐴 ) ) = ( 𝐶 − 𝐵 ) ) |