This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Difference of two class abstractions. (Contributed by NM, 23-Oct-2004) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difab | |- ( { x | ph } \ { x | ps } ) = { x | ( ph /\ -. ps ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab | |- ( y e. { x | ( ph /\ -. ps ) } <-> [ y / x ] ( ph /\ -. ps ) ) |
|
| 2 | sban | |- ( [ y / x ] ( ph /\ -. ps ) <-> ( [ y / x ] ph /\ [ y / x ] -. ps ) ) |
|
| 3 | df-clab | |- ( y e. { x | ph } <-> [ y / x ] ph ) |
|
| 4 | 3 | bicomi | |- ( [ y / x ] ph <-> y e. { x | ph } ) |
| 5 | sbn | |- ( [ y / x ] -. ps <-> -. [ y / x ] ps ) |
|
| 6 | df-clab | |- ( y e. { x | ps } <-> [ y / x ] ps ) |
|
| 7 | 5 6 | xchbinxr | |- ( [ y / x ] -. ps <-> -. y e. { x | ps } ) |
| 8 | 4 7 | anbi12i | |- ( ( [ y / x ] ph /\ [ y / x ] -. ps ) <-> ( y e. { x | ph } /\ -. y e. { x | ps } ) ) |
| 9 | 1 2 8 | 3bitrri | |- ( ( y e. { x | ph } /\ -. y e. { x | ps } ) <-> y e. { x | ( ph /\ -. ps ) } ) |
| 10 | 9 | difeqri | |- ( { x | ph } \ { x | ps } ) = { x | ( ph /\ -. ps ) } |