This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of Beran p. 98. (Contributed by NM, 26-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | normpyc | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) = 0 -> ( normh ` A ) <_ ( normh ` ( A +h B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normcl | |- ( A e. ~H -> ( normh ` A ) e. RR ) |
|
| 2 | 1 | resqcld | |- ( A e. ~H -> ( ( normh ` A ) ^ 2 ) e. RR ) |
| 3 | 2 | recnd | |- ( A e. ~H -> ( ( normh ` A ) ^ 2 ) e. CC ) |
| 4 | 3 | addridd | |- ( A e. ~H -> ( ( ( normh ` A ) ^ 2 ) + 0 ) = ( ( normh ` A ) ^ 2 ) ) |
| 5 | 4 | adantr | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( ( normh ` A ) ^ 2 ) + 0 ) = ( ( normh ` A ) ^ 2 ) ) |
| 6 | normcl | |- ( B e. ~H -> ( normh ` B ) e. RR ) |
|
| 7 | 6 | sqge0d | |- ( B e. ~H -> 0 <_ ( ( normh ` B ) ^ 2 ) ) |
| 8 | 7 | adantl | |- ( ( A e. ~H /\ B e. ~H ) -> 0 <_ ( ( normh ` B ) ^ 2 ) ) |
| 9 | 6 | resqcld | |- ( B e. ~H -> ( ( normh ` B ) ^ 2 ) e. RR ) |
| 10 | 0re | |- 0 e. RR |
|
| 11 | leadd2 | |- ( ( 0 e. RR /\ ( ( normh ` B ) ^ 2 ) e. RR /\ ( ( normh ` A ) ^ 2 ) e. RR ) -> ( 0 <_ ( ( normh ` B ) ^ 2 ) <-> ( ( ( normh ` A ) ^ 2 ) + 0 ) <_ ( ( ( normh ` A ) ^ 2 ) + ( ( normh ` B ) ^ 2 ) ) ) ) |
|
| 12 | 10 11 | mp3an1 | |- ( ( ( ( normh ` B ) ^ 2 ) e. RR /\ ( ( normh ` A ) ^ 2 ) e. RR ) -> ( 0 <_ ( ( normh ` B ) ^ 2 ) <-> ( ( ( normh ` A ) ^ 2 ) + 0 ) <_ ( ( ( normh ` A ) ^ 2 ) + ( ( normh ` B ) ^ 2 ) ) ) ) |
| 13 | 9 2 12 | syl2anr | |- ( ( A e. ~H /\ B e. ~H ) -> ( 0 <_ ( ( normh ` B ) ^ 2 ) <-> ( ( ( normh ` A ) ^ 2 ) + 0 ) <_ ( ( ( normh ` A ) ^ 2 ) + ( ( normh ` B ) ^ 2 ) ) ) ) |
| 14 | 8 13 | mpbid | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( ( normh ` A ) ^ 2 ) + 0 ) <_ ( ( ( normh ` A ) ^ 2 ) + ( ( normh ` B ) ^ 2 ) ) ) |
| 15 | 5 14 | eqbrtrrd | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( normh ` A ) ^ 2 ) <_ ( ( ( normh ` A ) ^ 2 ) + ( ( normh ` B ) ^ 2 ) ) ) |
| 16 | 15 | adantr | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( A .ih B ) = 0 ) -> ( ( normh ` A ) ^ 2 ) <_ ( ( ( normh ` A ) ^ 2 ) + ( ( normh ` B ) ^ 2 ) ) ) |
| 17 | normpyth | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) = 0 -> ( ( normh ` ( A +h B ) ) ^ 2 ) = ( ( ( normh ` A ) ^ 2 ) + ( ( normh ` B ) ^ 2 ) ) ) ) |
|
| 18 | 17 | imp | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( A .ih B ) = 0 ) -> ( ( normh ` ( A +h B ) ) ^ 2 ) = ( ( ( normh ` A ) ^ 2 ) + ( ( normh ` B ) ^ 2 ) ) ) |
| 19 | 16 18 | breqtrrd | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( A .ih B ) = 0 ) -> ( ( normh ` A ) ^ 2 ) <_ ( ( normh ` ( A +h B ) ) ^ 2 ) ) |
| 20 | 19 | ex | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) = 0 -> ( ( normh ` A ) ^ 2 ) <_ ( ( normh ` ( A +h B ) ) ^ 2 ) ) ) |
| 21 | 1 | adantr | |- ( ( A e. ~H /\ B e. ~H ) -> ( normh ` A ) e. RR ) |
| 22 | hvaddcl | |- ( ( A e. ~H /\ B e. ~H ) -> ( A +h B ) e. ~H ) |
|
| 23 | normcl | |- ( ( A +h B ) e. ~H -> ( normh ` ( A +h B ) ) e. RR ) |
|
| 24 | 22 23 | syl | |- ( ( A e. ~H /\ B e. ~H ) -> ( normh ` ( A +h B ) ) e. RR ) |
| 25 | normge0 | |- ( A e. ~H -> 0 <_ ( normh ` A ) ) |
|
| 26 | 25 | adantr | |- ( ( A e. ~H /\ B e. ~H ) -> 0 <_ ( normh ` A ) ) |
| 27 | normge0 | |- ( ( A +h B ) e. ~H -> 0 <_ ( normh ` ( A +h B ) ) ) |
|
| 28 | 22 27 | syl | |- ( ( A e. ~H /\ B e. ~H ) -> 0 <_ ( normh ` ( A +h B ) ) ) |
| 29 | 21 24 26 28 | le2sqd | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( normh ` A ) <_ ( normh ` ( A +h B ) ) <-> ( ( normh ` A ) ^ 2 ) <_ ( ( normh ` ( A +h B ) ) ^ 2 ) ) ) |
| 30 | 20 29 | sylibrd | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) = 0 -> ( normh ` A ) <_ ( normh ` ( A +h B ) ) ) ) |