This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 22-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normlem1.1 | |- S e. CC |
|
| normlem1.2 | |- F e. ~H |
||
| normlem1.3 | |- G e. ~H |
||
| normlem1.4 | |- R e. RR |
||
| normlem1.5 | |- ( abs ` S ) = 1 |
||
| Assertion | normlem1 | |- ( ( F -h ( ( S x. R ) .h G ) ) .ih ( F -h ( ( S x. R ) .h G ) ) ) = ( ( ( F .ih F ) + ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) ) + ( ( ( S x. -u R ) x. ( G .ih F ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem1.1 | |- S e. CC |
|
| 2 | normlem1.2 | |- F e. ~H |
|
| 3 | normlem1.3 | |- G e. ~H |
|
| 4 | normlem1.4 | |- R e. RR |
|
| 5 | normlem1.5 | |- ( abs ` S ) = 1 |
|
| 6 | 4 | recni | |- R e. CC |
| 7 | 1 6 | mulcli | |- ( S x. R ) e. CC |
| 8 | 7 2 3 | normlem0 | |- ( ( F -h ( ( S x. R ) .h G ) ) .ih ( F -h ( ( S x. R ) .h G ) ) ) = ( ( ( F .ih F ) + ( -u ( * ` ( S x. R ) ) x. ( F .ih G ) ) ) + ( ( -u ( S x. R ) x. ( G .ih F ) ) + ( ( ( S x. R ) x. ( * ` ( S x. R ) ) ) x. ( G .ih G ) ) ) ) |
| 9 | 1 6 | cjmuli | |- ( * ` ( S x. R ) ) = ( ( * ` S ) x. ( * ` R ) ) |
| 10 | 6 | cjrebi | |- ( R e. RR <-> ( * ` R ) = R ) |
| 11 | 4 10 | mpbi | |- ( * ` R ) = R |
| 12 | 11 | oveq2i | |- ( ( * ` S ) x. ( * ` R ) ) = ( ( * ` S ) x. R ) |
| 13 | 9 12 | eqtri | |- ( * ` ( S x. R ) ) = ( ( * ` S ) x. R ) |
| 14 | 13 | negeqi | |- -u ( * ` ( S x. R ) ) = -u ( ( * ` S ) x. R ) |
| 15 | 1 | cjcli | |- ( * ` S ) e. CC |
| 16 | 15 6 | mulneg2i | |- ( ( * ` S ) x. -u R ) = -u ( ( * ` S ) x. R ) |
| 17 | 14 16 | eqtr4i | |- -u ( * ` ( S x. R ) ) = ( ( * ` S ) x. -u R ) |
| 18 | 17 | oveq1i | |- ( -u ( * ` ( S x. R ) ) x. ( F .ih G ) ) = ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) |
| 19 | 18 | oveq2i | |- ( ( F .ih F ) + ( -u ( * ` ( S x. R ) ) x. ( F .ih G ) ) ) = ( ( F .ih F ) + ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) ) |
| 20 | 1 6 | mulneg2i | |- ( S x. -u R ) = -u ( S x. R ) |
| 21 | 20 | eqcomi | |- -u ( S x. R ) = ( S x. -u R ) |
| 22 | 21 | oveq1i | |- ( -u ( S x. R ) x. ( G .ih F ) ) = ( ( S x. -u R ) x. ( G .ih F ) ) |
| 23 | 9 | oveq2i | |- ( ( S x. R ) x. ( * ` ( S x. R ) ) ) = ( ( S x. R ) x. ( ( * ` S ) x. ( * ` R ) ) ) |
| 24 | 6 | cjcli | |- ( * ` R ) e. CC |
| 25 | 1 6 15 24 | mul4i | |- ( ( S x. R ) x. ( ( * ` S ) x. ( * ` R ) ) ) = ( ( S x. ( * ` S ) ) x. ( R x. ( * ` R ) ) ) |
| 26 | 5 | oveq1i | |- ( ( abs ` S ) ^ 2 ) = ( 1 ^ 2 ) |
| 27 | 1 | absvalsqi | |- ( ( abs ` S ) ^ 2 ) = ( S x. ( * ` S ) ) |
| 28 | sq1 | |- ( 1 ^ 2 ) = 1 |
|
| 29 | 26 27 28 | 3eqtr3i | |- ( S x. ( * ` S ) ) = 1 |
| 30 | 11 | oveq2i | |- ( R x. ( * ` R ) ) = ( R x. R ) |
| 31 | 29 30 | oveq12i | |- ( ( S x. ( * ` S ) ) x. ( R x. ( * ` R ) ) ) = ( 1 x. ( R x. R ) ) |
| 32 | 6 6 | mulcli | |- ( R x. R ) e. CC |
| 33 | 32 | mullidi | |- ( 1 x. ( R x. R ) ) = ( R x. R ) |
| 34 | 31 33 | eqtri | |- ( ( S x. ( * ` S ) ) x. ( R x. ( * ` R ) ) ) = ( R x. R ) |
| 35 | 25 34 | eqtri | |- ( ( S x. R ) x. ( ( * ` S ) x. ( * ` R ) ) ) = ( R x. R ) |
| 36 | 23 35 | eqtri | |- ( ( S x. R ) x. ( * ` ( S x. R ) ) ) = ( R x. R ) |
| 37 | 6 | sqvali | |- ( R ^ 2 ) = ( R x. R ) |
| 38 | 36 37 | eqtr4i | |- ( ( S x. R ) x. ( * ` ( S x. R ) ) ) = ( R ^ 2 ) |
| 39 | 38 | oveq1i | |- ( ( ( S x. R ) x. ( * ` ( S x. R ) ) ) x. ( G .ih G ) ) = ( ( R ^ 2 ) x. ( G .ih G ) ) |
| 40 | 22 39 | oveq12i | |- ( ( -u ( S x. R ) x. ( G .ih F ) ) + ( ( ( S x. R ) x. ( * ` ( S x. R ) ) ) x. ( G .ih G ) ) ) = ( ( ( S x. -u R ) x. ( G .ih F ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) |
| 41 | 19 40 | oveq12i | |- ( ( ( F .ih F ) + ( -u ( * ` ( S x. R ) ) x. ( F .ih G ) ) ) + ( ( -u ( S x. R ) x. ( G .ih F ) ) + ( ( ( S x. R ) x. ( * ` ( S x. R ) ) ) x. ( G .ih G ) ) ) ) = ( ( ( F .ih F ) + ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) ) + ( ( ( S x. -u R ) x. ( G .ih F ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) ) |
| 42 | 8 41 | eqtri | |- ( ( F -h ( ( S x. R ) .h G ) ) .ih ( F -h ( ( S x. R ) .h G ) ) ) = ( ( ( F .ih F ) + ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) ) + ( ( ( S x. -u R ) x. ( G .ih F ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) ) |