This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Norm of differences around common element. Part of Lemma 3.6 of Beran p. 101. (Contributed by NM, 20-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | norm3dif | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ≤ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) + ( normℎ ‘ ( 𝐶 −ℎ 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvoveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) = ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ) ) | |
| 2 | fvoveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) = ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) ) ) | |
| 3 | 2 | oveq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) + ( normℎ ‘ ( 𝐶 −ℎ 𝐵 ) ) ) = ( ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) ) + ( normℎ ‘ ( 𝐶 −ℎ 𝐵 ) ) ) ) |
| 4 | 1 3 | breq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ≤ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) + ( normℎ ‘ ( 𝐶 −ℎ 𝐵 ) ) ) ↔ ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ) ≤ ( ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) ) + ( normℎ ‘ ( 𝐶 −ℎ 𝐵 ) ) ) ) ) |
| 5 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 6 | 5 | fveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ) = ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
| 7 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( 𝐶 −ℎ 𝐵 ) = ( 𝐶 −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 8 | 7 | fveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( normℎ ‘ ( 𝐶 −ℎ 𝐵 ) ) = ( normℎ ‘ ( 𝐶 −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
| 9 | 8 | oveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) ) + ( normℎ ‘ ( 𝐶 −ℎ 𝐵 ) ) ) = ( ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) ) + ( normℎ ‘ ( 𝐶 −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) ) |
| 10 | 6 9 | breq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ) ≤ ( ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) ) + ( normℎ ‘ ( 𝐶 −ℎ 𝐵 ) ) ) ↔ ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ≤ ( ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) ) + ( normℎ ‘ ( 𝐶 −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) ) ) |
| 11 | oveq2 | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ) ) | |
| 12 | 11 | fveq2d | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) → ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) ) = ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ) ) ) |
| 13 | fvoveq1 | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) → ( normℎ ‘ ( 𝐶 −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) = ( normℎ ‘ ( if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) | |
| 14 | 12 13 | oveq12d | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) → ( ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) ) + ( normℎ ‘ ( 𝐶 −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) = ( ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ) ) + ( normℎ ‘ ( if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) ) |
| 15 | 14 | breq2d | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) → ( ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ≤ ( ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) ) + ( normℎ ‘ ( 𝐶 −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) ↔ ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ≤ ( ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ) ) + ( normℎ ‘ ( if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) ) ) |
| 16 | ifhvhv0 | ⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ | |
| 17 | ifhvhv0 | ⊢ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ∈ ℋ | |
| 18 | ifhvhv0 | ⊢ if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ∈ ℋ | |
| 19 | 16 17 18 | norm3difi | ⊢ ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ≤ ( ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ) ) + ( normℎ ‘ ( if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
| 20 | 4 10 15 19 | dedth3h | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ≤ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) + ( normℎ ‘ ( 𝐶 −ℎ 𝐵 ) ) ) ) |