This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma involving norm of differences in Hilbert space. (Contributed by NM, 18-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | norm3dif.1 | |- A e. ~H |
|
| norm3dif.2 | |- B e. ~H |
||
| norm3dif.3 | |- C e. ~H |
||
| norm3lem.4 | |- D e. RR |
||
| Assertion | norm3lem | |- ( ( ( normh ` ( A -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) -> ( normh ` ( A -h B ) ) < D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norm3dif.1 | |- A e. ~H |
|
| 2 | norm3dif.2 | |- B e. ~H |
|
| 3 | norm3dif.3 | |- C e. ~H |
|
| 4 | norm3lem.4 | |- D e. RR |
|
| 5 | 1 2 3 | norm3difi | |- ( normh ` ( A -h B ) ) <_ ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) |
| 6 | 1 3 | hvsubcli | |- ( A -h C ) e. ~H |
| 7 | 6 | normcli | |- ( normh ` ( A -h C ) ) e. RR |
| 8 | 3 2 | hvsubcli | |- ( C -h B ) e. ~H |
| 9 | 8 | normcli | |- ( normh ` ( C -h B ) ) e. RR |
| 10 | 4 | rehalfcli | |- ( D / 2 ) e. RR |
| 11 | 7 9 10 10 | lt2addi | |- ( ( ( normh ` ( A -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) -> ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) < ( ( D / 2 ) + ( D / 2 ) ) ) |
| 12 | 1 2 | hvsubcli | |- ( A -h B ) e. ~H |
| 13 | 12 | normcli | |- ( normh ` ( A -h B ) ) e. RR |
| 14 | 7 9 | readdcli | |- ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) e. RR |
| 15 | 10 10 | readdcli | |- ( ( D / 2 ) + ( D / 2 ) ) e. RR |
| 16 | 13 14 15 | lelttri | |- ( ( ( normh ` ( A -h B ) ) <_ ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) /\ ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) < ( ( D / 2 ) + ( D / 2 ) ) ) -> ( normh ` ( A -h B ) ) < ( ( D / 2 ) + ( D / 2 ) ) ) |
| 17 | 5 11 16 | sylancr | |- ( ( ( normh ` ( A -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) -> ( normh ` ( A -h B ) ) < ( ( D / 2 ) + ( D / 2 ) ) ) |
| 18 | 10 | recni | |- ( D / 2 ) e. CC |
| 19 | 18 | 2timesi | |- ( 2 x. ( D / 2 ) ) = ( ( D / 2 ) + ( D / 2 ) ) |
| 20 | 4 | recni | |- D e. CC |
| 21 | 2cn | |- 2 e. CC |
|
| 22 | 2ne0 | |- 2 =/= 0 |
|
| 23 | 20 21 22 | divcan2i | |- ( 2 x. ( D / 2 ) ) = D |
| 24 | 19 23 | eqtr3i | |- ( ( D / 2 ) + ( D / 2 ) ) = D |
| 25 | 17 24 | breqtrdi | |- ( ( ( normh ` ( A -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) -> ( normh ` ( A -h B ) ) < D ) |