This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Using the Axiom of Regularity in the form zfregfr , show that there are no infinite descending e. -chains. Proposition 7.34 of TakeutiZaring p. 44. (Contributed by NM, 26-Jan-2006) (Revised by Mario Carneiro, 22-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | noinfep | |- E. x e. _om ( F ` suc x ) e/ ( F ` x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex | |- _om e. _V |
|
| 2 | 1 | mptex | |- ( w e. _om |-> ( F ` w ) ) e. _V |
| 3 | 2 | rnex | |- ran ( w e. _om |-> ( F ` w ) ) e. _V |
| 4 | zfregfr | |- _E Fr ran ( w e. _om |-> ( F ` w ) ) |
|
| 5 | ssid | |- ran ( w e. _om |-> ( F ` w ) ) C_ ran ( w e. _om |-> ( F ` w ) ) |
|
| 6 | dmmptg | |- ( A. w e. _om ( F ` w ) e. _V -> dom ( w e. _om |-> ( F ` w ) ) = _om ) |
|
| 7 | fvexd | |- ( w e. _om -> ( F ` w ) e. _V ) |
|
| 8 | 6 7 | mprg | |- dom ( w e. _om |-> ( F ` w ) ) = _om |
| 9 | peano1 | |- (/) e. _om |
|
| 10 | 9 | ne0ii | |- _om =/= (/) |
| 11 | 8 10 | eqnetri | |- dom ( w e. _om |-> ( F ` w ) ) =/= (/) |
| 12 | dm0rn0 | |- ( dom ( w e. _om |-> ( F ` w ) ) = (/) <-> ran ( w e. _om |-> ( F ` w ) ) = (/) ) |
|
| 13 | 12 | necon3bii | |- ( dom ( w e. _om |-> ( F ` w ) ) =/= (/) <-> ran ( w e. _om |-> ( F ` w ) ) =/= (/) ) |
| 14 | 11 13 | mpbi | |- ran ( w e. _om |-> ( F ` w ) ) =/= (/) |
| 15 | fri | |- ( ( ( ran ( w e. _om |-> ( F ` w ) ) e. _V /\ _E Fr ran ( w e. _om |-> ( F ` w ) ) ) /\ ( ran ( w e. _om |-> ( F ` w ) ) C_ ran ( w e. _om |-> ( F ` w ) ) /\ ran ( w e. _om |-> ( F ` w ) ) =/= (/) ) ) -> E. y e. ran ( w e. _om |-> ( F ` w ) ) A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y ) |
|
| 16 | 3 4 5 14 15 | mp4an | |- E. y e. ran ( w e. _om |-> ( F ` w ) ) A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y |
| 17 | fvex | |- ( F ` w ) e. _V |
|
| 18 | eqid | |- ( w e. _om |-> ( F ` w ) ) = ( w e. _om |-> ( F ` w ) ) |
|
| 19 | 17 18 | fnmpti | |- ( w e. _om |-> ( F ` w ) ) Fn _om |
| 20 | fvelrnb | |- ( ( w e. _om |-> ( F ` w ) ) Fn _om -> ( y e. ran ( w e. _om |-> ( F ` w ) ) <-> E. x e. _om ( ( w e. _om |-> ( F ` w ) ) ` x ) = y ) ) |
|
| 21 | 19 20 | ax-mp | |- ( y e. ran ( w e. _om |-> ( F ` w ) ) <-> E. x e. _om ( ( w e. _om |-> ( F ` w ) ) ` x ) = y ) |
| 22 | peano2 | |- ( x e. _om -> suc x e. _om ) |
|
| 23 | fveq2 | |- ( w = suc x -> ( F ` w ) = ( F ` suc x ) ) |
|
| 24 | fvex | |- ( F ` suc x ) e. _V |
|
| 25 | 23 18 24 | fvmpt | |- ( suc x e. _om -> ( ( w e. _om |-> ( F ` w ) ) ` suc x ) = ( F ` suc x ) ) |
| 26 | 22 25 | syl | |- ( x e. _om -> ( ( w e. _om |-> ( F ` w ) ) ` suc x ) = ( F ` suc x ) ) |
| 27 | fnfvelrn | |- ( ( ( w e. _om |-> ( F ` w ) ) Fn _om /\ suc x e. _om ) -> ( ( w e. _om |-> ( F ` w ) ) ` suc x ) e. ran ( w e. _om |-> ( F ` w ) ) ) |
|
| 28 | 19 22 27 | sylancr | |- ( x e. _om -> ( ( w e. _om |-> ( F ` w ) ) ` suc x ) e. ran ( w e. _om |-> ( F ` w ) ) ) |
| 29 | 26 28 | eqeltrrd | |- ( x e. _om -> ( F ` suc x ) e. ran ( w e. _om |-> ( F ` w ) ) ) |
| 30 | epel | |- ( z _E y <-> z e. y ) |
|
| 31 | eleq1 | |- ( z = ( F ` suc x ) -> ( z e. y <-> ( F ` suc x ) e. y ) ) |
|
| 32 | 30 31 | bitrid | |- ( z = ( F ` suc x ) -> ( z _E y <-> ( F ` suc x ) e. y ) ) |
| 33 | 32 | notbid | |- ( z = ( F ` suc x ) -> ( -. z _E y <-> -. ( F ` suc x ) e. y ) ) |
| 34 | df-nel | |- ( ( F ` suc x ) e/ y <-> -. ( F ` suc x ) e. y ) |
|
| 35 | 33 34 | bitr4di | |- ( z = ( F ` suc x ) -> ( -. z _E y <-> ( F ` suc x ) e/ y ) ) |
| 36 | 35 | rspccv | |- ( A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y -> ( ( F ` suc x ) e. ran ( w e. _om |-> ( F ` w ) ) -> ( F ` suc x ) e/ y ) ) |
| 37 | 29 36 | syl5com | |- ( x e. _om -> ( A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y -> ( F ` suc x ) e/ y ) ) |
| 38 | fveq2 | |- ( w = x -> ( F ` w ) = ( F ` x ) ) |
|
| 39 | fvex | |- ( F ` x ) e. _V |
|
| 40 | 38 18 39 | fvmpt | |- ( x e. _om -> ( ( w e. _om |-> ( F ` w ) ) ` x ) = ( F ` x ) ) |
| 41 | eqeq1 | |- ( ( ( w e. _om |-> ( F ` w ) ) ` x ) = y -> ( ( ( w e. _om |-> ( F ` w ) ) ` x ) = ( F ` x ) <-> y = ( F ` x ) ) ) |
|
| 42 | 40 41 | syl5ibcom | |- ( x e. _om -> ( ( ( w e. _om |-> ( F ` w ) ) ` x ) = y -> y = ( F ` x ) ) ) |
| 43 | neleq2 | |- ( y = ( F ` x ) -> ( ( F ` suc x ) e/ y <-> ( F ` suc x ) e/ ( F ` x ) ) ) |
|
| 44 | 43 | biimpd | |- ( y = ( F ` x ) -> ( ( F ` suc x ) e/ y -> ( F ` suc x ) e/ ( F ` x ) ) ) |
| 45 | 42 44 | syl6 | |- ( x e. _om -> ( ( ( w e. _om |-> ( F ` w ) ) ` x ) = y -> ( ( F ` suc x ) e/ y -> ( F ` suc x ) e/ ( F ` x ) ) ) ) |
| 46 | 45 | com23 | |- ( x e. _om -> ( ( F ` suc x ) e/ y -> ( ( ( w e. _om |-> ( F ` w ) ) ` x ) = y -> ( F ` suc x ) e/ ( F ` x ) ) ) ) |
| 47 | 37 46 | syldc | |- ( A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y -> ( x e. _om -> ( ( ( w e. _om |-> ( F ` w ) ) ` x ) = y -> ( F ` suc x ) e/ ( F ` x ) ) ) ) |
| 48 | 47 | reximdvai | |- ( A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y -> ( E. x e. _om ( ( w e. _om |-> ( F ` w ) ) ` x ) = y -> E. x e. _om ( F ` suc x ) e/ ( F ` x ) ) ) |
| 49 | 21 48 | biimtrid | |- ( A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y -> ( y e. ran ( w e. _om |-> ( F ` w ) ) -> E. x e. _om ( F ` suc x ) e/ ( F ` x ) ) ) |
| 50 | 49 | com12 | |- ( y e. ran ( w e. _om |-> ( F ` w ) ) -> ( A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y -> E. x e. _om ( F ` suc x ) e/ ( F ` x ) ) ) |
| 51 | 50 | rexlimiv | |- ( E. y e. ran ( w e. _om |-> ( F ` w ) ) A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y -> E. x e. _om ( F ` suc x ) e/ ( F ` x ) ) |
| 52 | 16 51 | ax-mp | |- E. x e. _om ( F ` suc x ) e/ ( F ` x ) |