This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The membership relation is well-founded on any class. (Contributed by NM, 26-Nov-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zfregfr | |- _E Fr A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfepfr | |- ( _E Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i y ) = (/) ) ) |
|
| 2 | vex | |- x e. _V |
|
| 3 | zfreg | |- ( ( x e. _V /\ x =/= (/) ) -> E. y e. x ( y i^i x ) = (/) ) |
|
| 4 | 2 3 | mpan | |- ( x =/= (/) -> E. y e. x ( y i^i x ) = (/) ) |
| 5 | incom | |- ( y i^i x ) = ( x i^i y ) |
|
| 6 | 5 | eqeq1i | |- ( ( y i^i x ) = (/) <-> ( x i^i y ) = (/) ) |
| 7 | 6 | rexbii | |- ( E. y e. x ( y i^i x ) = (/) <-> E. y e. x ( x i^i y ) = (/) ) |
| 8 | 4 7 | sylib | |- ( x =/= (/) -> E. y e. x ( x i^i y ) = (/) ) |
| 9 | 8 | adantl | |- ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i y ) = (/) ) |
| 10 | 1 9 | mpgbir | |- _E Fr A |