This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A natural number is not the successor of itself. (Contributed by AV, 17-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omsucne | |- ( A e. _om -> A =/= suc A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnord | |- ( A e. _om -> Ord A ) |
|
| 2 | orddisj | |- ( Ord A -> ( A i^i { A } ) = (/) ) |
|
| 3 | 1 2 | syl | |- ( A e. _om -> ( A i^i { A } ) = (/) ) |
| 4 | snnzg | |- ( A e. _om -> { A } =/= (/) ) |
|
| 5 | disjpss | |- ( ( ( A i^i { A } ) = (/) /\ { A } =/= (/) ) -> A C. ( A u. { A } ) ) |
|
| 6 | 3 4 5 | syl2anc | |- ( A e. _om -> A C. ( A u. { A } ) ) |
| 7 | 6 | pssned | |- ( A e. _om -> A =/= ( A u. { A } ) ) |
| 8 | df-suc | |- suc A = ( A u. { A } ) |
|
| 9 | 8 | neeq2i | |- ( A =/= suc A <-> A =/= ( A u. { A } ) ) |
| 10 | 7 9 | sylibr | |- ( A e. _om -> A =/= suc A ) |