This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 14-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nppcan3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) + ( C + B ) ) = ( A + C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - B ) e. CC ) |
| 3 | simp3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> C e. CC ) |
|
| 4 | simp2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> B e. CC ) |
|
| 5 | 2 3 4 | addassd | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A - B ) + C ) + B ) = ( ( A - B ) + ( C + B ) ) ) |
| 6 | nppcan | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A - B ) + C ) + B ) = ( A + C ) ) |
|
| 7 | 5 6 | eqtr3d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) + ( C + B ) ) = ( A + C ) ) |