This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer which divides both positive operands of the gcd operator is bounded by it. (Contributed by AV, 9-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nndvdslegcd | |- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> ( ( K || M /\ K || N ) -> K <_ ( M gcd N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | |- ( K e. NN -> K e. ZZ ) |
|
| 2 | nnz | |- ( M e. NN -> M e. ZZ ) |
|
| 3 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 4 | 1 2 3 | 3anim123i | |- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) ) |
| 5 | nnne0 | |- ( M e. NN -> M =/= 0 ) |
|
| 6 | 5 | neneqd | |- ( M e. NN -> -. M = 0 ) |
| 7 | 6 | 3ad2ant2 | |- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> -. M = 0 ) |
| 8 | 7 | intnanrd | |- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> -. ( M = 0 /\ N = 0 ) ) |
| 9 | dvdslegcd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( K || M /\ K || N ) -> K <_ ( M gcd N ) ) ) |
|
| 10 | 4 8 9 | syl2anc | |- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> ( ( K || M /\ K || N ) -> K <_ ( M gcd N ) ) ) |