This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first N + 1 elements of the set of nonnegative integers are distinct from any later members. (Contributed by AV, 8-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0disj | |- ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel2 | |- ( k e. ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) -> k e. ( ZZ>= ` ( N + 1 ) ) ) |
|
| 2 | eluzle | |- ( k e. ( ZZ>= ` ( N + 1 ) ) -> ( N + 1 ) <_ k ) |
|
| 3 | 1 2 | syl | |- ( k e. ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) -> ( N + 1 ) <_ k ) |
| 4 | eluzel2 | |- ( k e. ( ZZ>= ` ( N + 1 ) ) -> ( N + 1 ) e. ZZ ) |
|
| 5 | 1 4 | syl | |- ( k e. ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) -> ( N + 1 ) e. ZZ ) |
| 6 | eluzelz | |- ( k e. ( ZZ>= ` ( N + 1 ) ) -> k e. ZZ ) |
|
| 7 | 1 6 | syl | |- ( k e. ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) -> k e. ZZ ) |
| 8 | zlem1lt | |- ( ( ( N + 1 ) e. ZZ /\ k e. ZZ ) -> ( ( N + 1 ) <_ k <-> ( ( N + 1 ) - 1 ) < k ) ) |
|
| 9 | 5 7 8 | syl2anc | |- ( k e. ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) -> ( ( N + 1 ) <_ k <-> ( ( N + 1 ) - 1 ) < k ) ) |
| 10 | 3 9 | mpbid | |- ( k e. ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) -> ( ( N + 1 ) - 1 ) < k ) |
| 11 | elinel1 | |- ( k e. ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) -> k e. ( 0 ... N ) ) |
|
| 12 | elfzle2 | |- ( k e. ( 0 ... N ) -> k <_ N ) |
|
| 13 | 11 12 | syl | |- ( k e. ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) -> k <_ N ) |
| 14 | 7 | zred | |- ( k e. ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) -> k e. RR ) |
| 15 | elin | |- ( k e. ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) <-> ( k e. ( 0 ... N ) /\ k e. ( ZZ>= ` ( N + 1 ) ) ) ) |
|
| 16 | elfzel2 | |- ( k e. ( 0 ... N ) -> N e. ZZ ) |
|
| 17 | 16 | adantr | |- ( ( k e. ( 0 ... N ) /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> N e. ZZ ) |
| 18 | 15 17 | sylbi | |- ( k e. ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) -> N e. ZZ ) |
| 19 | 18 | zred | |- ( k e. ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) -> N e. RR ) |
| 20 | 14 19 | lenltd | |- ( k e. ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) -> ( k <_ N <-> -. N < k ) ) |
| 21 | 18 | zcnd | |- ( k e. ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) -> N e. CC ) |
| 22 | pncan1 | |- ( N e. CC -> ( ( N + 1 ) - 1 ) = N ) |
|
| 23 | 21 22 | syl | |- ( k e. ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) -> ( ( N + 1 ) - 1 ) = N ) |
| 24 | 23 | eqcomd | |- ( k e. ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) -> N = ( ( N + 1 ) - 1 ) ) |
| 25 | 24 | breq1d | |- ( k e. ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) -> ( N < k <-> ( ( N + 1 ) - 1 ) < k ) ) |
| 26 | 25 | notbid | |- ( k e. ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) -> ( -. N < k <-> -. ( ( N + 1 ) - 1 ) < k ) ) |
| 27 | 20 26 | bitrd | |- ( k e. ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) -> ( k <_ N <-> -. ( ( N + 1 ) - 1 ) < k ) ) |
| 28 | 13 27 | mpbid | |- ( k e. ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) -> -. ( ( N + 1 ) - 1 ) < k ) |
| 29 | 10 28 | pm2.21dd | |- ( k e. ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) -> k e. (/) ) |
| 30 | 29 | ssriv | |- ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) C_ (/) |
| 31 | ss0 | |- ( ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) C_ (/) -> ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) = (/) ) |
|
| 32 | 30 31 | ax-mp | |- ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) = (/) |