This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for nn0opthi . (Contributed by Raph Levien, 10-Dec-2002) (Revised by Scott Fenton, 8-Sep-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nn0opth.1 | |- A e. NN0 |
|
| nn0opth.2 | |- B e. NN0 |
||
| nn0opth.3 | |- C e. NN0 |
||
| nn0opth.4 | |- D e. NN0 |
||
| Assertion | nn0opthlem2 | |- ( ( A + B ) < C -> ( ( C x. C ) + D ) =/= ( ( ( A + B ) x. ( A + B ) ) + B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0opth.1 | |- A e. NN0 |
|
| 2 | nn0opth.2 | |- B e. NN0 |
|
| 3 | nn0opth.3 | |- C e. NN0 |
|
| 4 | nn0opth.4 | |- D e. NN0 |
|
| 5 | 1 2 | nn0addcli | |- ( A + B ) e. NN0 |
| 6 | 5 3 | nn0opthlem1 | |- ( ( A + B ) < C <-> ( ( ( A + B ) x. ( A + B ) ) + ( 2 x. ( A + B ) ) ) < ( C x. C ) ) |
| 7 | 2 | nn0rei | |- B e. RR |
| 8 | 7 1 | nn0addge2i | |- B <_ ( A + B ) |
| 9 | 5 2 | nn0lele2xi | |- ( B <_ ( A + B ) -> B <_ ( 2 x. ( A + B ) ) ) |
| 10 | 2re | |- 2 e. RR |
|
| 11 | 5 | nn0rei | |- ( A + B ) e. RR |
| 12 | 10 11 | remulcli | |- ( 2 x. ( A + B ) ) e. RR |
| 13 | 11 11 | remulcli | |- ( ( A + B ) x. ( A + B ) ) e. RR |
| 14 | 7 12 13 | leadd2i | |- ( B <_ ( 2 x. ( A + B ) ) <-> ( ( ( A + B ) x. ( A + B ) ) + B ) <_ ( ( ( A + B ) x. ( A + B ) ) + ( 2 x. ( A + B ) ) ) ) |
| 15 | 9 14 | sylib | |- ( B <_ ( A + B ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) <_ ( ( ( A + B ) x. ( A + B ) ) + ( 2 x. ( A + B ) ) ) ) |
| 16 | 8 15 | ax-mp | |- ( ( ( A + B ) x. ( A + B ) ) + B ) <_ ( ( ( A + B ) x. ( A + B ) ) + ( 2 x. ( A + B ) ) ) |
| 17 | 13 7 | readdcli | |- ( ( ( A + B ) x. ( A + B ) ) + B ) e. RR |
| 18 | 13 12 | readdcli | |- ( ( ( A + B ) x. ( A + B ) ) + ( 2 x. ( A + B ) ) ) e. RR |
| 19 | 3 | nn0rei | |- C e. RR |
| 20 | 19 19 | remulcli | |- ( C x. C ) e. RR |
| 21 | 17 18 20 | lelttri | |- ( ( ( ( ( A + B ) x. ( A + B ) ) + B ) <_ ( ( ( A + B ) x. ( A + B ) ) + ( 2 x. ( A + B ) ) ) /\ ( ( ( A + B ) x. ( A + B ) ) + ( 2 x. ( A + B ) ) ) < ( C x. C ) ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) < ( C x. C ) ) |
| 22 | 16 21 | mpan | |- ( ( ( ( A + B ) x. ( A + B ) ) + ( 2 x. ( A + B ) ) ) < ( C x. C ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) < ( C x. C ) ) |
| 23 | 6 22 | sylbi | |- ( ( A + B ) < C -> ( ( ( A + B ) x. ( A + B ) ) + B ) < ( C x. C ) ) |
| 24 | 20 4 | nn0addge1i | |- ( C x. C ) <_ ( ( C x. C ) + D ) |
| 25 | 4 | nn0rei | |- D e. RR |
| 26 | 20 25 | readdcli | |- ( ( C x. C ) + D ) e. RR |
| 27 | 17 20 26 | ltletri | |- ( ( ( ( ( A + B ) x. ( A + B ) ) + B ) < ( C x. C ) /\ ( C x. C ) <_ ( ( C x. C ) + D ) ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) < ( ( C x. C ) + D ) ) |
| 28 | 24 27 | mpan2 | |- ( ( ( ( A + B ) x. ( A + B ) ) + B ) < ( C x. C ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) < ( ( C x. C ) + D ) ) |
| 29 | 17 26 | ltnei | |- ( ( ( ( A + B ) x. ( A + B ) ) + B ) < ( ( C x. C ) + D ) -> ( ( C x. C ) + D ) =/= ( ( ( A + B ) x. ( A + B ) ) + B ) ) |
| 30 | 23 28 29 | 3syl | |- ( ( A + B ) < C -> ( ( C x. C ) + D ) =/= ( ( ( A + B ) x. ( A + B ) ) + B ) ) |