This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordered pair theorem for nonnegative integers. Theorem 17.3 of Quine p. 124. See comments for nn0opthi . (Contributed by NM, 22-Jul-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nn0opth.1 | |- A e. NN0 |
|
| nn0opth.2 | |- B e. NN0 |
||
| nn0opth.3 | |- C e. NN0 |
||
| nn0opth.4 | |- D e. NN0 |
||
| Assertion | nn0opth2i | |- ( ( ( ( A + B ) ^ 2 ) + B ) = ( ( ( C + D ) ^ 2 ) + D ) <-> ( A = C /\ B = D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0opth.1 | |- A e. NN0 |
|
| 2 | nn0opth.2 | |- B e. NN0 |
|
| 3 | nn0opth.3 | |- C e. NN0 |
|
| 4 | nn0opth.4 | |- D e. NN0 |
|
| 5 | 1 | nn0cni | |- A e. CC |
| 6 | 2 | nn0cni | |- B e. CC |
| 7 | 5 6 | addcli | |- ( A + B ) e. CC |
| 8 | 7 | sqvali | |- ( ( A + B ) ^ 2 ) = ( ( A + B ) x. ( A + B ) ) |
| 9 | 8 | oveq1i | |- ( ( ( A + B ) ^ 2 ) + B ) = ( ( ( A + B ) x. ( A + B ) ) + B ) |
| 10 | 3 | nn0cni | |- C e. CC |
| 11 | 4 | nn0cni | |- D e. CC |
| 12 | 10 11 | addcli | |- ( C + D ) e. CC |
| 13 | 12 | sqvali | |- ( ( C + D ) ^ 2 ) = ( ( C + D ) x. ( C + D ) ) |
| 14 | 13 | oveq1i | |- ( ( ( C + D ) ^ 2 ) + D ) = ( ( ( C + D ) x. ( C + D ) ) + D ) |
| 15 | 9 14 | eqeq12i | |- ( ( ( ( A + B ) ^ 2 ) + B ) = ( ( ( C + D ) ^ 2 ) + D ) <-> ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) ) |
| 16 | 1 2 3 4 | nn0opthi | |- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) <-> ( A = C /\ B = D ) ) |
| 17 | 15 16 | bitri | |- ( ( ( ( A + B ) ^ 2 ) + B ) = ( ( ( C + D ) ^ 2 ) + D ) <-> ( A = C /\ B = D ) ) |