This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 16-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0le2is012 | |- ( ( N e. NN0 /\ N <_ 2 ) -> ( N = 0 \/ N = 1 \/ N = 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 2 | 2re | |- 2 e. RR |
|
| 3 | 2 | a1i | |- ( N e. NN0 -> 2 e. RR ) |
| 4 | 1 3 | leloed | |- ( N e. NN0 -> ( N <_ 2 <-> ( N < 2 \/ N = 2 ) ) ) |
| 5 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 6 | 2z | |- 2 e. ZZ |
|
| 7 | zltlem1 | |- ( ( N e. ZZ /\ 2 e. ZZ ) -> ( N < 2 <-> N <_ ( 2 - 1 ) ) ) |
|
| 8 | 5 6 7 | sylancl | |- ( N e. NN0 -> ( N < 2 <-> N <_ ( 2 - 1 ) ) ) |
| 9 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 10 | 9 | a1i | |- ( N e. NN0 -> ( 2 - 1 ) = 1 ) |
| 11 | 10 | breq2d | |- ( N e. NN0 -> ( N <_ ( 2 - 1 ) <-> N <_ 1 ) ) |
| 12 | 8 11 | bitrd | |- ( N e. NN0 -> ( N < 2 <-> N <_ 1 ) ) |
| 13 | 1red | |- ( N e. NN0 -> 1 e. RR ) |
|
| 14 | 1 13 | leloed | |- ( N e. NN0 -> ( N <_ 1 <-> ( N < 1 \/ N = 1 ) ) ) |
| 15 | nn0lt10b | |- ( N e. NN0 -> ( N < 1 <-> N = 0 ) ) |
|
| 16 | 3mix1 | |- ( N = 0 -> ( N = 0 \/ N = 1 \/ N = 2 ) ) |
|
| 17 | 15 16 | biimtrdi | |- ( N e. NN0 -> ( N < 1 -> ( N = 0 \/ N = 1 \/ N = 2 ) ) ) |
| 18 | 17 | com12 | |- ( N < 1 -> ( N e. NN0 -> ( N = 0 \/ N = 1 \/ N = 2 ) ) ) |
| 19 | 3mix2 | |- ( N = 1 -> ( N = 0 \/ N = 1 \/ N = 2 ) ) |
|
| 20 | 19 | a1d | |- ( N = 1 -> ( N e. NN0 -> ( N = 0 \/ N = 1 \/ N = 2 ) ) ) |
| 21 | 18 20 | jaoi | |- ( ( N < 1 \/ N = 1 ) -> ( N e. NN0 -> ( N = 0 \/ N = 1 \/ N = 2 ) ) ) |
| 22 | 21 | com12 | |- ( N e. NN0 -> ( ( N < 1 \/ N = 1 ) -> ( N = 0 \/ N = 1 \/ N = 2 ) ) ) |
| 23 | 14 22 | sylbid | |- ( N e. NN0 -> ( N <_ 1 -> ( N = 0 \/ N = 1 \/ N = 2 ) ) ) |
| 24 | 12 23 | sylbid | |- ( N e. NN0 -> ( N < 2 -> ( N = 0 \/ N = 1 \/ N = 2 ) ) ) |
| 25 | 24 | com12 | |- ( N < 2 -> ( N e. NN0 -> ( N = 0 \/ N = 1 \/ N = 2 ) ) ) |
| 26 | 3mix3 | |- ( N = 2 -> ( N = 0 \/ N = 1 \/ N = 2 ) ) |
|
| 27 | 26 | a1d | |- ( N = 2 -> ( N e. NN0 -> ( N = 0 \/ N = 1 \/ N = 2 ) ) ) |
| 28 | 25 27 | jaoi | |- ( ( N < 2 \/ N = 2 ) -> ( N e. NN0 -> ( N = 0 \/ N = 1 \/ N = 2 ) ) ) |
| 29 | 28 | com12 | |- ( N e. NN0 -> ( ( N < 2 \/ N = 2 ) -> ( N = 0 \/ N = 1 \/ N = 2 ) ) ) |
| 30 | 4 29 | sylbid | |- ( N e. NN0 -> ( N <_ 2 -> ( N = 0 \/ N = 1 \/ N = 2 ) ) ) |
| 31 | 30 | imp | |- ( ( N e. NN0 /\ N <_ 2 ) -> ( N = 0 \/ N = 1 \/ N = 2 ) ) |