This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first N + 1 elements of the set of nonnegative integers are distinct from any later members. (Contributed by AV, 8-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0disj | ⊢ ( ( 0 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel2 | ⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) | |
| 2 | eluzle | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( 𝑁 + 1 ) ≤ 𝑘 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( 𝑁 + 1 ) ≤ 𝑘 ) |
| 4 | eluzel2 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( 𝑁 + 1 ) ∈ ℤ ) | |
| 5 | 1 4 | syl | ⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( 𝑁 + 1 ) ∈ ℤ ) |
| 6 | eluzelz | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → 𝑘 ∈ ℤ ) | |
| 7 | 1 6 | syl | ⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑘 ∈ ℤ ) |
| 8 | zlem1lt | ⊢ ( ( ( 𝑁 + 1 ) ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 𝑁 + 1 ) ≤ 𝑘 ↔ ( ( 𝑁 + 1 ) − 1 ) < 𝑘 ) ) | |
| 9 | 5 7 8 | syl2anc | ⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( ( 𝑁 + 1 ) ≤ 𝑘 ↔ ( ( 𝑁 + 1 ) − 1 ) < 𝑘 ) ) |
| 10 | 3 9 | mpbid | ⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( ( 𝑁 + 1 ) − 1 ) < 𝑘 ) |
| 11 | elinel1 | ⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑘 ∈ ( 0 ... 𝑁 ) ) | |
| 12 | elfzle2 | ⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ≤ 𝑁 ) | |
| 13 | 11 12 | syl | ⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑘 ≤ 𝑁 ) |
| 14 | 7 | zred | ⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑘 ∈ ℝ ) |
| 15 | elin | ⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ↔ ( 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) | |
| 16 | elfzel2 | ⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 17 | 16 | adantr | ⊢ ( ( 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑁 ∈ ℤ ) |
| 18 | 15 17 | sylbi | ⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑁 ∈ ℤ ) |
| 19 | 18 | zred | ⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑁 ∈ ℝ ) |
| 20 | 14 19 | lenltd | ⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( 𝑘 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑘 ) ) |
| 21 | 18 | zcnd | ⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑁 ∈ ℂ ) |
| 22 | pncan1 | ⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) | |
| 23 | 21 22 | syl | ⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 24 | 23 | eqcomd | ⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑁 = ( ( 𝑁 + 1 ) − 1 ) ) |
| 25 | 24 | breq1d | ⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( 𝑁 < 𝑘 ↔ ( ( 𝑁 + 1 ) − 1 ) < 𝑘 ) ) |
| 26 | 25 | notbid | ⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( ¬ 𝑁 < 𝑘 ↔ ¬ ( ( 𝑁 + 1 ) − 1 ) < 𝑘 ) ) |
| 27 | 20 26 | bitrd | ⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( 𝑘 ≤ 𝑁 ↔ ¬ ( ( 𝑁 + 1 ) − 1 ) < 𝑘 ) ) |
| 28 | 13 27 | mpbid | ⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ¬ ( ( 𝑁 + 1 ) − 1 ) < 𝑘 ) |
| 29 | 10 28 | pm2.21dd | ⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑘 ∈ ∅ ) |
| 30 | 29 | ssriv | ⊢ ( ( 0 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ⊆ ∅ |
| 31 | ss0 | ⊢ ( ( ( 0 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ⊆ ∅ → ( ( 0 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = ∅ ) | |
| 32 | 30 31 | ax-mp | ⊢ ( ( 0 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = ∅ |