This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle inequality for the norm of two subtractions. (Contributed by NM, 24-Feb-2008) (Revised by AV, 8-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmtri2.x | |- X = ( Base ` G ) |
|
| nmtri2.n | |- N = ( norm ` G ) |
||
| nmtri2.m | |- .- = ( -g ` G ) |
||
| Assertion | nmtri2 | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( N ` ( A .- C ) ) <_ ( ( N ` ( A .- B ) ) + ( N ` ( B .- C ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmtri2.x | |- X = ( Base ` G ) |
|
| 2 | nmtri2.n | |- N = ( norm ` G ) |
|
| 3 | nmtri2.m | |- .- = ( -g ` G ) |
|
| 4 | ngpgrp | |- ( G e. NrmGrp -> G e. Grp ) |
|
| 5 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 6 | 1 5 3 | grpnpncan | |- ( ( G e. Grp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A .- B ) ( +g ` G ) ( B .- C ) ) = ( A .- C ) ) |
| 7 | 6 | eqcomd | |- ( ( G e. Grp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A .- C ) = ( ( A .- B ) ( +g ` G ) ( B .- C ) ) ) |
| 8 | 4 7 | sylan | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A .- C ) = ( ( A .- B ) ( +g ` G ) ( B .- C ) ) ) |
| 9 | 8 | fveq2d | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( N ` ( A .- C ) ) = ( N ` ( ( A .- B ) ( +g ` G ) ( B .- C ) ) ) ) |
| 10 | simpl | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> G e. NrmGrp ) |
|
| 11 | 4 | adantr | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> G e. Grp ) |
| 12 | simpr1 | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> A e. X ) |
|
| 13 | simpr2 | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> B e. X ) |
|
| 14 | 1 3 | grpsubcl | |- ( ( G e. Grp /\ A e. X /\ B e. X ) -> ( A .- B ) e. X ) |
| 15 | 11 12 13 14 | syl3anc | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A .- B ) e. X ) |
| 16 | simpr3 | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> C e. X ) |
|
| 17 | 1 3 | grpsubcl | |- ( ( G e. Grp /\ B e. X /\ C e. X ) -> ( B .- C ) e. X ) |
| 18 | 11 13 16 17 | syl3anc | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B .- C ) e. X ) |
| 19 | 1 2 5 | nmtri | |- ( ( G e. NrmGrp /\ ( A .- B ) e. X /\ ( B .- C ) e. X ) -> ( N ` ( ( A .- B ) ( +g ` G ) ( B .- C ) ) ) <_ ( ( N ` ( A .- B ) ) + ( N ` ( B .- C ) ) ) ) |
| 20 | 10 15 18 19 | syl3anc | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( N ` ( ( A .- B ) ( +g ` G ) ( B .- C ) ) ) <_ ( ( N ` ( A .- B ) ) + ( N ` ( B .- C ) ) ) ) |
| 21 | 9 20 | eqbrtrd | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( N ` ( A .- C ) ) <_ ( ( N ` ( A .- B ) ) + ( N ` ( B .- C ) ) ) ) |