This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for group subtraction. ( npncan analog.) (Contributed by NM, 15-Feb-2008) (Revised by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubadd.b | |- B = ( Base ` G ) |
|
| grpsubadd.p | |- .+ = ( +g ` G ) |
||
| grpsubadd.m | |- .- = ( -g ` G ) |
||
| Assertion | grpnpncan | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .- Y ) .+ ( Y .- Z ) ) = ( X .- Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubadd.b | |- B = ( Base ` G ) |
|
| 2 | grpsubadd.p | |- .+ = ( +g ` G ) |
|
| 3 | grpsubadd.m | |- .- = ( -g ` G ) |
|
| 4 | simpl | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> G e. Grp ) |
|
| 5 | 1 3 | grpsubcl | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .- Y ) e. B ) |
| 6 | 5 | 3adant3r3 | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .- Y ) e. B ) |
| 7 | simpr2 | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Y e. B ) |
|
| 8 | simpr3 | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Z e. B ) |
|
| 9 | 1 2 3 | grpaddsubass | |- ( ( G e. Grp /\ ( ( X .- Y ) e. B /\ Y e. B /\ Z e. B ) ) -> ( ( ( X .- Y ) .+ Y ) .- Z ) = ( ( X .- Y ) .+ ( Y .- Z ) ) ) |
| 10 | 4 6 7 8 9 | syl13anc | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( ( X .- Y ) .+ Y ) .- Z ) = ( ( X .- Y ) .+ ( Y .- Z ) ) ) |
| 11 | 1 2 3 | grpnpcan | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( X .- Y ) .+ Y ) = X ) |
| 12 | 11 | 3adant3r3 | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .- Y ) .+ Y ) = X ) |
| 13 | 12 | oveq1d | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( ( X .- Y ) .+ Y ) .- Z ) = ( X .- Z ) ) |
| 14 | 10 13 | eqtr3d | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .- Y ) .+ ( Y .- Z ) ) = ( X .- Z ) ) |