This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The properties of a normed group, which is a group accompanied by a norm. (Contributed by AV, 7-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ngpi.v | |- V = ( Base ` W ) |
|
| ngpi.n | |- N = ( norm ` W ) |
||
| ngpi.m | |- .- = ( -g ` W ) |
||
| ngpi.0 | |- .0. = ( 0g ` W ) |
||
| Assertion | ngpi | |- ( W e. NrmGrp -> ( W e. Grp /\ N : V --> RR /\ A. x e. V ( ( ( N ` x ) = 0 <-> x = .0. ) /\ A. y e. V ( N ` ( x .- y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpi.v | |- V = ( Base ` W ) |
|
| 2 | ngpi.n | |- N = ( norm ` W ) |
|
| 3 | ngpi.m | |- .- = ( -g ` W ) |
|
| 4 | ngpi.0 | |- .0. = ( 0g ` W ) |
|
| 5 | ngpgrp | |- ( W e. NrmGrp -> W e. Grp ) |
|
| 6 | 1 2 | nmf | |- ( W e. NrmGrp -> N : V --> RR ) |
| 7 | 1 2 4 | nmeq0 | |- ( ( W e. NrmGrp /\ x e. V ) -> ( ( N ` x ) = 0 <-> x = .0. ) ) |
| 8 | 1 2 3 | nmmtri | |- ( ( W e. NrmGrp /\ x e. V /\ y e. V ) -> ( N ` ( x .- y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) |
| 9 | 8 | 3expa | |- ( ( ( W e. NrmGrp /\ x e. V ) /\ y e. V ) -> ( N ` ( x .- y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) |
| 10 | 9 | ralrimiva | |- ( ( W e. NrmGrp /\ x e. V ) -> A. y e. V ( N ` ( x .- y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) |
| 11 | 7 10 | jca | |- ( ( W e. NrmGrp /\ x e. V ) -> ( ( ( N ` x ) = 0 <-> x = .0. ) /\ A. y e. V ( N ` ( x .- y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) ) |
| 12 | 11 | ralrimiva | |- ( W e. NrmGrp -> A. x e. V ( ( ( N ` x ) = 0 <-> x = .0. ) /\ A. y e. V ( N ` ( x .- y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) ) |
| 13 | 5 6 12 | 3jca | |- ( W e. NrmGrp -> ( W e. Grp /\ N : V --> RR /\ A. x e. V ( ( ( N ` x ) = 0 <-> x = .0. ) /\ A. y e. V ( N ` ( x .- y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) ) ) |