This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a Hilbert space operator is real iff it is less than infinity. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmopreltpnf | |- ( T : ~H --> ~H -> ( ( normop ` T ) e. RR <-> ( normop ` T ) < +oo ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoprepnf | |- ( T : ~H --> ~H -> ( ( normop ` T ) e. RR <-> ( normop ` T ) =/= +oo ) ) |
|
| 2 | nmopxr | |- ( T : ~H --> ~H -> ( normop ` T ) e. RR* ) |
|
| 3 | nltpnft | |- ( ( normop ` T ) e. RR* -> ( ( normop ` T ) = +oo <-> -. ( normop ` T ) < +oo ) ) |
|
| 4 | 2 3 | syl | |- ( T : ~H --> ~H -> ( ( normop ` T ) = +oo <-> -. ( normop ` T ) < +oo ) ) |
| 5 | 4 | necon2abid | |- ( T : ~H --> ~H -> ( ( normop ` T ) < +oo <-> ( normop ` T ) =/= +oo ) ) |
| 6 | 1 5 | bitr4d | |- ( T : ~H --> ~H -> ( ( normop ` T ) e. RR <-> ( normop ` T ) < +oo ) ) |