This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a Hilbert space operator is either real or plus infinity. (Contributed by NM, 5-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmoprepnf | |- ( T : ~H --> ~H -> ( ( normop ` T ) e. RR <-> ( normop ` T ) =/= +oo ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmopsetretHIL | |- ( T : ~H --> ~H -> { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } C_ RR ) |
|
| 2 | nmopsetn0 | |- ( normh ` ( T ` 0h ) ) e. { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } |
|
| 3 | 2 | ne0ii | |- { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } =/= (/) |
| 4 | supxrre2 | |- ( ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } C_ RR /\ { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } =/= (/) ) -> ( sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } , RR* , < ) e. RR <-> sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } , RR* , < ) =/= +oo ) ) |
|
| 5 | 1 3 4 | sylancl | |- ( T : ~H --> ~H -> ( sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } , RR* , < ) e. RR <-> sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } , RR* , < ) =/= +oo ) ) |
| 6 | nmopval | |- ( T : ~H --> ~H -> ( normop ` T ) = sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } , RR* , < ) ) |
|
| 7 | 6 | eleq1d | |- ( T : ~H --> ~H -> ( ( normop ` T ) e. RR <-> sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } , RR* , < ) e. RR ) ) |
| 8 | 6 | neeq1d | |- ( T : ~H --> ~H -> ( ( normop ` T ) =/= +oo <-> sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } , RR* , < ) =/= +oo ) ) |
| 9 | 5 7 8 | 3bitr4d | |- ( T : ~H --> ~H -> ( ( normop ` T ) e. RR <-> ( normop ` T ) =/= +oo ) ) |