This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the norm of a Hilbert space functional. (Contributed by NM, 11-Feb-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmfnval | |- ( T : ~H --> CC -> ( normfn ` T ) = sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( T ` y ) ) ) } , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltso | |- < Or RR* |
|
| 2 | 1 | supex | |- sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( T ` y ) ) ) } , RR* , < ) e. _V |
| 3 | ax-hilex | |- ~H e. _V |
|
| 4 | cnex | |- CC e. _V |
|
| 5 | fveq1 | |- ( t = T -> ( t ` y ) = ( T ` y ) ) |
|
| 6 | 5 | fveq2d | |- ( t = T -> ( abs ` ( t ` y ) ) = ( abs ` ( T ` y ) ) ) |
| 7 | 6 | eqeq2d | |- ( t = T -> ( x = ( abs ` ( t ` y ) ) <-> x = ( abs ` ( T ` y ) ) ) ) |
| 8 | 7 | anbi2d | |- ( t = T -> ( ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( t ` y ) ) ) <-> ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( T ` y ) ) ) ) ) |
| 9 | 8 | rexbidv | |- ( t = T -> ( E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( t ` y ) ) ) <-> E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( T ` y ) ) ) ) ) |
| 10 | 9 | abbidv | |- ( t = T -> { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( t ` y ) ) ) } = { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( T ` y ) ) ) } ) |
| 11 | 10 | supeq1d | |- ( t = T -> sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( t ` y ) ) ) } , RR* , < ) = sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( T ` y ) ) ) } , RR* , < ) ) |
| 12 | df-nmfn | |- normfn = ( t e. ( CC ^m ~H ) |-> sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( t ` y ) ) ) } , RR* , < ) ) |
|
| 13 | 2 3 4 11 12 | fvmptmap | |- ( T : ~H --> CC -> ( normfn ` T ) = sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( T ` y ) ) ) } , RR* , < ) ) |