This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If x is not free in ph , then it is not free in E. y ph . (Contributed by Mario Carneiro, 11-Aug-2016) (Proof shortened by Wolf Lammen, 30-Dec-2017) Reduce symbol count in nfex , hbex . (Revised by Wolf Lammen, 16-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nfex.1 | |- F/ x ph |
|
| Assertion | nfex | |- F/ x E. y ph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfex.1 | |- F/ x ph |
|
| 2 | df-ex | |- ( E. y ph <-> -. A. y -. ph ) |
|
| 3 | 1 | nfn | |- F/ x -. ph |
| 4 | 3 | nfal | |- F/ x A. y -. ph |
| 5 | 4 | nfn | |- F/ x -. A. y -. ph |
| 6 | 2 5 | nfxfr | |- F/ x E. y ph |