This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the full Lebesgue integral, for complex-valued functions to RR . The syntax is designed to be suggestive of the standard notation for integrals. For example, our notation for the integral of x ^ 2 from 0 to 1 is S. ( 0 , 1 ) ( x ^ 2 ) _d x = ( 1 / 3 ) . The only real function of this definition is to break the integral up into nonnegative real parts and send it off to df-itg2 for further processing. Note that this definition cannot handle integrals which evaluate to infinity, because addition and multiplication are not currently defined on extended reals. (You can use df-itg2 directly for this use-case.) (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-itg | |- S. A B _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / y ]_ if ( ( x e. A /\ 0 <_ y ) , y , 0 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | |- A |
|
| 1 | cB | |- B |
|
| 2 | vx | |- x |
|
| 3 | 2 0 1 | citg | |- S. A B _d x |
| 4 | vk | |- k |
|
| 5 | cc0 | |- 0 |
|
| 6 | cfz | |- ... |
|
| 7 | c3 | |- 3 |
|
| 8 | 5 7 6 | co | |- ( 0 ... 3 ) |
| 9 | ci | |- _i |
|
| 10 | cexp | |- ^ |
|
| 11 | 4 | cv | |- k |
| 12 | 9 11 10 | co | |- ( _i ^ k ) |
| 13 | cmul | |- x. |
|
| 14 | citg2 | |- S.2 |
|
| 15 | cr | |- RR |
|
| 16 | cre | |- Re |
|
| 17 | cdiv | |- / |
|
| 18 | 1 12 17 | co | |- ( B / ( _i ^ k ) ) |
| 19 | 18 16 | cfv | |- ( Re ` ( B / ( _i ^ k ) ) ) |
| 20 | vy | |- y |
|
| 21 | 2 | cv | |- x |
| 22 | 21 0 | wcel | |- x e. A |
| 23 | cle | |- <_ |
|
| 24 | 20 | cv | |- y |
| 25 | 5 24 23 | wbr | |- 0 <_ y |
| 26 | 22 25 | wa | |- ( x e. A /\ 0 <_ y ) |
| 27 | 26 24 5 | cif | |- if ( ( x e. A /\ 0 <_ y ) , y , 0 ) |
| 28 | 20 19 27 | csb | |- [_ ( Re ` ( B / ( _i ^ k ) ) ) / y ]_ if ( ( x e. A /\ 0 <_ y ) , y , 0 ) |
| 29 | 2 15 28 | cmpt | |- ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / y ]_ if ( ( x e. A /\ 0 <_ y ) , y , 0 ) ) |
| 30 | 29 14 | cfv | |- ( S.2 ` ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / y ]_ if ( ( x e. A /\ 0 <_ y ) , y , 0 ) ) ) |
| 31 | 12 30 13 | co | |- ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / y ]_ if ( ( x e. A /\ 0 <_ y ) , y , 0 ) ) ) ) |
| 32 | 8 31 4 | csu | |- sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / y ]_ if ( ( x e. A /\ 0 <_ y ) , y , 0 ) ) ) ) |
| 33 | 3 32 | wceq | |- S. A B _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / y ]_ if ( ( x e. A /\ 0 <_ y ) , y , 0 ) ) ) ) |