This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "the class N is a neighborhood of point P ". (Contributed by NM, 26-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | neifval.1 | |- X = U. J |
|
| Assertion | isneip | |- ( ( J e. Top /\ P e. X ) -> ( N e. ( ( nei ` J ) ` { P } ) <-> ( N C_ X /\ E. g e. J ( P e. g /\ g C_ N ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neifval.1 | |- X = U. J |
|
| 2 | snssi | |- ( P e. X -> { P } C_ X ) |
|
| 3 | 1 | isnei | |- ( ( J e. Top /\ { P } C_ X ) -> ( N e. ( ( nei ` J ) ` { P } ) <-> ( N C_ X /\ E. g e. J ( { P } C_ g /\ g C_ N ) ) ) ) |
| 4 | 2 3 | sylan2 | |- ( ( J e. Top /\ P e. X ) -> ( N e. ( ( nei ` J ) ` { P } ) <-> ( N C_ X /\ E. g e. J ( { P } C_ g /\ g C_ N ) ) ) ) |
| 5 | snssg | |- ( P e. X -> ( P e. g <-> { P } C_ g ) ) |
|
| 6 | 5 | anbi1d | |- ( P e. X -> ( ( P e. g /\ g C_ N ) <-> ( { P } C_ g /\ g C_ N ) ) ) |
| 7 | 6 | rexbidv | |- ( P e. X -> ( E. g e. J ( P e. g /\ g C_ N ) <-> E. g e. J ( { P } C_ g /\ g C_ N ) ) ) |
| 8 | 7 | anbi2d | |- ( P e. X -> ( ( N C_ X /\ E. g e. J ( P e. g /\ g C_ N ) ) <-> ( N C_ X /\ E. g e. J ( { P } C_ g /\ g C_ N ) ) ) ) |
| 9 | 8 | adantl | |- ( ( J e. Top /\ P e. X ) -> ( ( N C_ X /\ E. g e. J ( P e. g /\ g C_ N ) ) <-> ( N C_ X /\ E. g e. J ( { P } C_ g /\ g C_ N ) ) ) ) |
| 10 | 4 9 | bitr4d | |- ( ( J e. Top /\ P e. X ) -> ( N e. ( ( nei ` J ) ` { P } ) <-> ( N C_ X /\ E. g e. J ( P e. g /\ g C_ N ) ) ) ) |