This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert a restricted existential quantification over a pair to a disjunction. (Contributed by NM, 17-Sep-2011) (Revised by Mario Carneiro, 23-Apr-2015) Avoid ax-10 , ax-12 . (Revised by GG, 30-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralprg.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| ralprg.2 | |- ( x = B -> ( ph <-> ch ) ) |
||
| Assertion | rexprg | |- ( ( A e. V /\ B e. W ) -> ( E. x e. { A , B } ph <-> ( ps \/ ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralprg.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | ralprg.2 | |- ( x = B -> ( ph <-> ch ) ) |
|
| 3 | 1 | notbid | |- ( x = A -> ( -. ph <-> -. ps ) ) |
| 4 | 2 | notbid | |- ( x = B -> ( -. ph <-> -. ch ) ) |
| 5 | 3 4 | ralprg | |- ( ( A e. V /\ B e. W ) -> ( A. x e. { A , B } -. ph <-> ( -. ps /\ -. ch ) ) ) |
| 6 | ralnex | |- ( A. x e. { A , B } -. ph <-> -. E. x e. { A , B } ph ) |
|
| 7 | pm4.56 | |- ( ( -. ps /\ -. ch ) <-> -. ( ps \/ ch ) ) |
|
| 8 | 6 7 | bibi12i | |- ( ( A. x e. { A , B } -. ph <-> ( -. ps /\ -. ch ) ) <-> ( -. E. x e. { A , B } ph <-> -. ( ps \/ ch ) ) ) |
| 9 | notbi | |- ( ( E. x e. { A , B } ph <-> ( ps \/ ch ) ) <-> ( -. E. x e. { A , B } ph <-> -. ( ps \/ ch ) ) ) |
|
| 10 | 8 9 | sylbb2 | |- ( ( A. x e. { A , B } -. ph <-> ( -. ps /\ -. ch ) ) -> ( E. x e. { A , B } ph <-> ( ps \/ ch ) ) ) |
| 11 | 5 10 | syl | |- ( ( A e. V /\ B e. W ) -> ( E. x e. { A , B } ph <-> ( ps \/ ch ) ) ) |