This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert a restricted existential quantification over a triple to a disjunction. (Contributed by Mario Carneiro, 23-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralprg.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| ralprg.2 | |- ( x = B -> ( ph <-> ch ) ) |
||
| raltpg.3 | |- ( x = C -> ( ph <-> th ) ) |
||
| Assertion | rextpg | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( E. x e. { A , B , C } ph <-> ( ps \/ ch \/ th ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralprg.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | ralprg.2 | |- ( x = B -> ( ph <-> ch ) ) |
|
| 3 | raltpg.3 | |- ( x = C -> ( ph <-> th ) ) |
|
| 4 | 1 2 | rexprg | |- ( ( A e. V /\ B e. W ) -> ( E. x e. { A , B } ph <-> ( ps \/ ch ) ) ) |
| 5 | 4 | orbi1d | |- ( ( A e. V /\ B e. W ) -> ( ( E. x e. { A , B } ph \/ E. x e. { C } ph ) <-> ( ( ps \/ ch ) \/ E. x e. { C } ph ) ) ) |
| 6 | 3 | rexsng | |- ( C e. X -> ( E. x e. { C } ph <-> th ) ) |
| 7 | 6 | orbi2d | |- ( C e. X -> ( ( ( ps \/ ch ) \/ E. x e. { C } ph ) <-> ( ( ps \/ ch ) \/ th ) ) ) |
| 8 | 5 7 | sylan9bb | |- ( ( ( A e. V /\ B e. W ) /\ C e. X ) -> ( ( E. x e. { A , B } ph \/ E. x e. { C } ph ) <-> ( ( ps \/ ch ) \/ th ) ) ) |
| 9 | 8 | 3impa | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( E. x e. { A , B } ph \/ E. x e. { C } ph ) <-> ( ( ps \/ ch ) \/ th ) ) ) |
| 10 | df-tp | |- { A , B , C } = ( { A , B } u. { C } ) |
|
| 11 | 10 | rexeqi | |- ( E. x e. { A , B , C } ph <-> E. x e. ( { A , B } u. { C } ) ph ) |
| 12 | rexun | |- ( E. x e. ( { A , B } u. { C } ) ph <-> ( E. x e. { A , B } ph \/ E. x e. { C } ph ) ) |
|
| 13 | 11 12 | bitri | |- ( E. x e. { A , B , C } ph <-> ( E. x e. { A , B } ph \/ E. x e. { C } ph ) ) |
| 14 | df-3or | |- ( ( ps \/ ch \/ th ) <-> ( ( ps \/ ch ) \/ th ) ) |
|
| 15 | 9 13 14 | 3bitr4g | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( E. x e. { A , B , C } ph <-> ( ps \/ ch \/ th ) ) ) |