This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017) (Proof shortened by JJ, 23-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | diftpsn3 | |- ( ( A =/= C /\ B =/= C ) -> ( { A , B , C } \ { C } ) = { A , B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjprsn | |- ( ( A =/= C /\ B =/= C ) -> ( { A , B } i^i { C } ) = (/) ) |
|
| 2 | disj3 | |- ( ( { A , B } i^i { C } ) = (/) <-> { A , B } = ( { A , B } \ { C } ) ) |
|
| 3 | 1 2 | sylib | |- ( ( A =/= C /\ B =/= C ) -> { A , B } = ( { A , B } \ { C } ) ) |
| 4 | 3 | eqcomd | |- ( ( A =/= C /\ B =/= C ) -> ( { A , B } \ { C } ) = { A , B } ) |
| 5 | difid | |- ( { C } \ { C } ) = (/) |
|
| 6 | 5 | a1i | |- ( ( A =/= C /\ B =/= C ) -> ( { C } \ { C } ) = (/) ) |
| 7 | 4 6 | uneq12d | |- ( ( A =/= C /\ B =/= C ) -> ( ( { A , B } \ { C } ) u. ( { C } \ { C } ) ) = ( { A , B } u. (/) ) ) |
| 8 | df-tp | |- { A , B , C } = ( { A , B } u. { C } ) |
|
| 9 | 8 | difeq1i | |- ( { A , B , C } \ { C } ) = ( ( { A , B } u. { C } ) \ { C } ) |
| 10 | difundir | |- ( ( { A , B } u. { C } ) \ { C } ) = ( ( { A , B } \ { C } ) u. ( { C } \ { C } ) ) |
|
| 11 | 9 10 | eqtr2i | |- ( ( { A , B } \ { C } ) u. ( { C } \ { C } ) ) = ( { A , B , C } \ { C } ) |
| 12 | un0 | |- ( { A , B } u. (/) ) = { A , B } |
|
| 13 | 7 11 12 | 3eqtr3g | |- ( ( A =/= C /\ B =/= C ) -> ( { A , B , C } \ { C } ) = { A , B } ) |