This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the generating elements of the power series algebra. (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mvr | |- mVar = ( i e. _V , r e. _V |-> ( x e. i |-> ( f e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> if ( f = ( y e. i |-> if ( y = x , 1 , 0 ) ) , ( 1r ` r ) , ( 0g ` r ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmvr | |- mVar |
|
| 1 | vi | |- i |
|
| 2 | cvv | |- _V |
|
| 3 | vr | |- r |
|
| 4 | vx | |- x |
|
| 5 | 1 | cv | |- i |
| 6 | vf | |- f |
|
| 7 | vh | |- h |
|
| 8 | cn0 | |- NN0 |
|
| 9 | cmap | |- ^m |
|
| 10 | 8 5 9 | co | |- ( NN0 ^m i ) |
| 11 | 7 | cv | |- h |
| 12 | 11 | ccnv | |- `' h |
| 13 | cn | |- NN |
|
| 14 | 12 13 | cima | |- ( `' h " NN ) |
| 15 | cfn | |- Fin |
|
| 16 | 14 15 | wcel | |- ( `' h " NN ) e. Fin |
| 17 | 16 7 10 | crab | |- { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |
| 18 | 6 | cv | |- f |
| 19 | vy | |- y |
|
| 20 | 19 | cv | |- y |
| 21 | 4 | cv | |- x |
| 22 | 20 21 | wceq | |- y = x |
| 23 | c1 | |- 1 |
|
| 24 | cc0 | |- 0 |
|
| 25 | 22 23 24 | cif | |- if ( y = x , 1 , 0 ) |
| 26 | 19 5 25 | cmpt | |- ( y e. i |-> if ( y = x , 1 , 0 ) ) |
| 27 | 18 26 | wceq | |- f = ( y e. i |-> if ( y = x , 1 , 0 ) ) |
| 28 | cur | |- 1r |
|
| 29 | 3 | cv | |- r |
| 30 | 29 28 | cfv | |- ( 1r ` r ) |
| 31 | c0g | |- 0g |
|
| 32 | 29 31 | cfv | |- ( 0g ` r ) |
| 33 | 27 30 32 | cif | |- if ( f = ( y e. i |-> if ( y = x , 1 , 0 ) ) , ( 1r ` r ) , ( 0g ` r ) ) |
| 34 | 6 17 33 | cmpt | |- ( f e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> if ( f = ( y e. i |-> if ( y = x , 1 , 0 ) ) , ( 1r ` r ) , ( 0g ` r ) ) ) |
| 35 | 4 5 34 | cmpt | |- ( x e. i |-> ( f e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> if ( f = ( y e. i |-> if ( y = x , 1 , 0 ) ) , ( 1r ` r ) , ( 0g ` r ) ) ) ) |
| 36 | 1 3 2 2 35 | cmpo | |- ( i e. _V , r e. _V |-> ( x e. i |-> ( f e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> if ( f = ( y e. i |-> if ( y = x , 1 , 0 ) ) , ( 1r ` r ) , ( 0g ` r ) ) ) ) ) |
| 37 | 0 36 | wceq | |- mVar = ( i e. _V , r e. _V |-> ( x e. i |-> ( f e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> if ( f = ( y e. i |-> if ( y = x , 1 , 0 ) ) , ( 1r ` r ) , ( 0g ` r ) ) ) ) ) |