This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Product of two differences. (Contributed by NM, 14-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulsub | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 − 𝐵 ) · ( 𝐶 − 𝐷 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) − ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) | |
| 2 | negsub | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐶 + - 𝐷 ) = ( 𝐶 − 𝐷 ) ) | |
| 3 | 1 2 | oveqan12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + - 𝐵 ) · ( 𝐶 + - 𝐷 ) ) = ( ( 𝐴 − 𝐵 ) · ( 𝐶 − 𝐷 ) ) ) |
| 4 | negcl | ⊢ ( 𝐵 ∈ ℂ → - 𝐵 ∈ ℂ ) | |
| 5 | negcl | ⊢ ( 𝐷 ∈ ℂ → - 𝐷 ∈ ℂ ) | |
| 6 | muladd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ - 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ - 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + - 𝐵 ) · ( 𝐶 + - 𝐷 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( - 𝐷 · - 𝐵 ) ) + ( ( 𝐴 · - 𝐷 ) + ( 𝐶 · - 𝐵 ) ) ) ) | |
| 7 | 5 6 | sylanr2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ - 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + - 𝐵 ) · ( 𝐶 + - 𝐷 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( - 𝐷 · - 𝐵 ) ) + ( ( 𝐴 · - 𝐷 ) + ( 𝐶 · - 𝐵 ) ) ) ) |
| 8 | 4 7 | sylanl2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + - 𝐵 ) · ( 𝐶 + - 𝐷 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( - 𝐷 · - 𝐵 ) ) + ( ( 𝐴 · - 𝐷 ) + ( 𝐶 · - 𝐵 ) ) ) ) |
| 9 | mul2neg | ⊢ ( ( 𝐷 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐷 · - 𝐵 ) = ( 𝐷 · 𝐵 ) ) | |
| 10 | 9 | ancoms | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( - 𝐷 · - 𝐵 ) = ( 𝐷 · 𝐵 ) ) |
| 11 | 10 | oveq2d | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( 𝐴 · 𝐶 ) + ( - 𝐷 · - 𝐵 ) ) = ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) ) |
| 12 | 11 | ad2ant2l | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 · 𝐶 ) + ( - 𝐷 · - 𝐵 ) ) = ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) ) |
| 13 | mulneg2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐴 · - 𝐷 ) = - ( 𝐴 · 𝐷 ) ) | |
| 14 | mulneg2 | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐶 · - 𝐵 ) = - ( 𝐶 · 𝐵 ) ) | |
| 15 | 13 14 | oveqan12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) → ( ( 𝐴 · - 𝐷 ) + ( 𝐶 · - 𝐵 ) ) = ( - ( 𝐴 · 𝐷 ) + - ( 𝐶 · 𝐵 ) ) ) |
| 16 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐴 · 𝐷 ) ∈ ℂ ) | |
| 17 | mulcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐶 · 𝐵 ) ∈ ℂ ) | |
| 18 | negdi | ⊢ ( ( ( 𝐴 · 𝐷 ) ∈ ℂ ∧ ( 𝐶 · 𝐵 ) ∈ ℂ ) → - ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) = ( - ( 𝐴 · 𝐷 ) + - ( 𝐶 · 𝐵 ) ) ) | |
| 19 | 16 17 18 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) → - ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) = ( - ( 𝐴 · 𝐷 ) + - ( 𝐶 · 𝐵 ) ) ) |
| 20 | 15 19 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) → ( ( 𝐴 · - 𝐷 ) + ( 𝐶 · - 𝐵 ) ) = - ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) |
| 21 | 20 | ancom2s | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) → ( ( 𝐴 · - 𝐷 ) + ( 𝐶 · - 𝐵 ) ) = - ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) |
| 22 | 21 | an42s | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 · - 𝐷 ) + ( 𝐶 · - 𝐵 ) ) = - ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) |
| 23 | 12 22 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 · 𝐶 ) + ( - 𝐷 · - 𝐵 ) ) + ( ( 𝐴 · - 𝐷 ) + ( 𝐶 · - 𝐵 ) ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) + - ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) ) |
| 24 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐶 ) ∈ ℂ ) | |
| 25 | mulcl | ⊢ ( ( 𝐷 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐷 · 𝐵 ) ∈ ℂ ) | |
| 26 | 25 | ancoms | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐷 · 𝐵 ) ∈ ℂ ) |
| 27 | addcl | ⊢ ( ( ( 𝐴 · 𝐶 ) ∈ ℂ ∧ ( 𝐷 · 𝐵 ) ∈ ℂ ) → ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) ∈ ℂ ) | |
| 28 | 24 26 27 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) ∈ ℂ ) |
| 29 | 28 | an4s | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) ∈ ℂ ) |
| 30 | 17 | ancoms | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 · 𝐵 ) ∈ ℂ ) |
| 31 | addcl | ⊢ ( ( ( 𝐴 · 𝐷 ) ∈ ℂ ∧ ( 𝐶 · 𝐵 ) ∈ ℂ ) → ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ∈ ℂ ) | |
| 32 | 16 30 31 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) → ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ∈ ℂ ) |
| 33 | 32 | an42s | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ∈ ℂ ) |
| 34 | 29 33 | negsubd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) + - ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) − ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) ) |
| 35 | 8 23 34 | 3eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + - 𝐵 ) · ( 𝐶 + - 𝐷 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) − ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) ) |
| 36 | 3 35 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 − 𝐵 ) · ( 𝐶 − 𝐷 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) − ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) ) |