This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple product of sums expansion. (Contributed by AV, 30-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | muladd11r | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + 1 ) x. ( B + 1 ) ) = ( ( ( A x. B ) + ( A + B ) ) + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
|
| 2 | 1cnd | |- ( ( A e. CC /\ B e. CC ) -> 1 e. CC ) |
|
| 3 | 1 2 | addcomd | |- ( ( A e. CC /\ B e. CC ) -> ( A + 1 ) = ( 1 + A ) ) |
| 4 | simpr | |- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
|
| 5 | 4 2 | addcomd | |- ( ( A e. CC /\ B e. CC ) -> ( B + 1 ) = ( 1 + B ) ) |
| 6 | 3 5 | oveq12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + 1 ) x. ( B + 1 ) ) = ( ( 1 + A ) x. ( 1 + B ) ) ) |
| 7 | muladd11 | |- ( ( A e. CC /\ B e. CC ) -> ( ( 1 + A ) x. ( 1 + B ) ) = ( ( 1 + A ) + ( B + ( A x. B ) ) ) ) |
|
| 8 | mulcl | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
|
| 9 | 4 8 | addcld | |- ( ( A e. CC /\ B e. CC ) -> ( B + ( A x. B ) ) e. CC ) |
| 10 | 2 1 9 | addassd | |- ( ( A e. CC /\ B e. CC ) -> ( ( 1 + A ) + ( B + ( A x. B ) ) ) = ( 1 + ( A + ( B + ( A x. B ) ) ) ) ) |
| 11 | 1 9 | addcld | |- ( ( A e. CC /\ B e. CC ) -> ( A + ( B + ( A x. B ) ) ) e. CC ) |
| 12 | 2 11 | addcomd | |- ( ( A e. CC /\ B e. CC ) -> ( 1 + ( A + ( B + ( A x. B ) ) ) ) = ( ( A + ( B + ( A x. B ) ) ) + 1 ) ) |
| 13 | 1 4 8 | addassd | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) + ( A x. B ) ) = ( A + ( B + ( A x. B ) ) ) ) |
| 14 | addcl | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
|
| 15 | 14 8 | addcomd | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) + ( A x. B ) ) = ( ( A x. B ) + ( A + B ) ) ) |
| 16 | 13 15 | eqtr3d | |- ( ( A e. CC /\ B e. CC ) -> ( A + ( B + ( A x. B ) ) ) = ( ( A x. B ) + ( A + B ) ) ) |
| 17 | 16 | oveq1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + ( B + ( A x. B ) ) ) + 1 ) = ( ( ( A x. B ) + ( A + B ) ) + 1 ) ) |
| 18 | 10 12 17 | 3eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( 1 + A ) + ( B + ( A x. B ) ) ) = ( ( ( A x. B ) + ( A + B ) ) + 1 ) ) |
| 19 | 6 7 18 | 3eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + 1 ) x. ( B + 1 ) ) = ( ( ( A x. B ) + ( A + B ) ) + 1 ) ) |