This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple product of sums expansion. (Contributed by AV, 30-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | muladd11r | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 1 ) · ( 𝐵 + 1 ) ) = ( ( ( 𝐴 · 𝐵 ) + ( 𝐴 + 𝐵 ) ) + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 2 | 1cnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 1 ∈ ℂ ) | |
| 3 | 1 2 | addcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 1 ) = ( 1 + 𝐴 ) ) |
| 4 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 5 | 4 2 | addcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 + 1 ) = ( 1 + 𝐵 ) ) |
| 6 | 3 5 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 1 ) · ( 𝐵 + 1 ) ) = ( ( 1 + 𝐴 ) · ( 1 + 𝐵 ) ) ) |
| 7 | muladd11 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 𝐴 ) · ( 1 + 𝐵 ) ) = ( ( 1 + 𝐴 ) + ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) ) | |
| 8 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) | |
| 9 | 4 8 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 + ( 𝐴 · 𝐵 ) ) ∈ ℂ ) |
| 10 | 2 1 9 | addassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 𝐴 ) + ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) = ( 1 + ( 𝐴 + ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) ) ) |
| 11 | 1 9 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) ∈ ℂ ) |
| 12 | 2 11 | addcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 1 + ( 𝐴 + ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) ) = ( ( 𝐴 + ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) + 1 ) ) |
| 13 | 1 4 8 | addassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + ( 𝐴 · 𝐵 ) ) = ( 𝐴 + ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) ) |
| 14 | addcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) | |
| 15 | 14 8 | addcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + ( 𝐴 · 𝐵 ) ) = ( ( 𝐴 · 𝐵 ) + ( 𝐴 + 𝐵 ) ) ) |
| 16 | 13 15 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) = ( ( 𝐴 · 𝐵 ) + ( 𝐴 + 𝐵 ) ) ) |
| 17 | 16 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) + 1 ) = ( ( ( 𝐴 · 𝐵 ) + ( 𝐴 + 𝐵 ) ) + 1 ) ) |
| 18 | 10 12 17 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 𝐴 ) + ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) = ( ( ( 𝐴 · 𝐵 ) + ( 𝐴 + 𝐵 ) ) + 1 ) ) |
| 19 | 6 7 18 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 1 ) · ( 𝐵 + 1 ) ) = ( ( ( 𝐴 · 𝐵 ) + ( 𝐴 + 𝐵 ) ) + 1 ) ) |