This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mul2lt0.1 | |- ( ph -> A e. RR ) |
|
| mul2lt0.2 | |- ( ph -> B e. RR ) |
||
| mul2lt0.3 | |- ( ph -> ( A x. B ) < 0 ) |
||
| Assertion | mul2lt0rlt0 | |- ( ( ph /\ B < 0 ) -> 0 < A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul2lt0.1 | |- ( ph -> A e. RR ) |
|
| 2 | mul2lt0.2 | |- ( ph -> B e. RR ) |
|
| 3 | mul2lt0.3 | |- ( ph -> ( A x. B ) < 0 ) |
|
| 4 | 1 2 | remulcld | |- ( ph -> ( A x. B ) e. RR ) |
| 5 | 4 | adantr | |- ( ( ph /\ B < 0 ) -> ( A x. B ) e. RR ) |
| 6 | 0red | |- ( ( ph /\ B < 0 ) -> 0 e. RR ) |
|
| 7 | negelrp | |- ( B e. RR -> ( -u B e. RR+ <-> B < 0 ) ) |
|
| 8 | 2 7 | syl | |- ( ph -> ( -u B e. RR+ <-> B < 0 ) ) |
| 9 | 8 | biimpar | |- ( ( ph /\ B < 0 ) -> -u B e. RR+ ) |
| 10 | 3 | adantr | |- ( ( ph /\ B < 0 ) -> ( A x. B ) < 0 ) |
| 11 | 5 6 9 10 | ltdiv1dd | |- ( ( ph /\ B < 0 ) -> ( ( A x. B ) / -u B ) < ( 0 / -u B ) ) |
| 12 | 1 | recnd | |- ( ph -> A e. CC ) |
| 13 | 12 | adantr | |- ( ( ph /\ B < 0 ) -> A e. CC ) |
| 14 | 2 | recnd | |- ( ph -> B e. CC ) |
| 15 | 14 | adantr | |- ( ( ph /\ B < 0 ) -> B e. CC ) |
| 16 | 13 15 | mulcld | |- ( ( ph /\ B < 0 ) -> ( A x. B ) e. CC ) |
| 17 | simpr | |- ( ( ph /\ B < 0 ) -> B < 0 ) |
|
| 18 | 17 | lt0ne0d | |- ( ( ph /\ B < 0 ) -> B =/= 0 ) |
| 19 | 16 15 18 | divneg2d | |- ( ( ph /\ B < 0 ) -> -u ( ( A x. B ) / B ) = ( ( A x. B ) / -u B ) ) |
| 20 | 13 15 18 | divcan4d | |- ( ( ph /\ B < 0 ) -> ( ( A x. B ) / B ) = A ) |
| 21 | 20 | negeqd | |- ( ( ph /\ B < 0 ) -> -u ( ( A x. B ) / B ) = -u A ) |
| 22 | 19 21 | eqtr3d | |- ( ( ph /\ B < 0 ) -> ( ( A x. B ) / -u B ) = -u A ) |
| 23 | 15 | negcld | |- ( ( ph /\ B < 0 ) -> -u B e. CC ) |
| 24 | 15 18 | negne0d | |- ( ( ph /\ B < 0 ) -> -u B =/= 0 ) |
| 25 | 23 24 | div0d | |- ( ( ph /\ B < 0 ) -> ( 0 / -u B ) = 0 ) |
| 26 | 11 22 25 | 3brtr3d | |- ( ( ph /\ B < 0 ) -> -u A < 0 ) |
| 27 | 1 | adantr | |- ( ( ph /\ B < 0 ) -> A e. RR ) |
| 28 | 27 | lt0neg2d | |- ( ( ph /\ B < 0 ) -> ( 0 < A <-> -u A < 0 ) ) |
| 29 | 26 28 | mpbird | |- ( ( ph /\ B < 0 ) -> 0 < A ) |