This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | msdcn.x | |- X = ( Base ` M ) |
|
| msdcn.d | |- D = ( dist ` M ) |
||
| msdcn.j | |- J = ( TopOpen ` M ) |
||
| msdcn.2 | |- K = ( topGen ` ran (,) ) |
||
| Assertion | msdcn | |- ( M e. MetSp -> ( D |` ( X X. X ) ) e. ( ( J tX J ) Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | msdcn.x | |- X = ( Base ` M ) |
|
| 2 | msdcn.d | |- D = ( dist ` M ) |
|
| 3 | msdcn.j | |- J = ( TopOpen ` M ) |
|
| 4 | msdcn.2 | |- K = ( topGen ` ran (,) ) |
|
| 5 | 1 2 | msmet2 | |- ( M e. MetSp -> ( D |` ( X X. X ) ) e. ( Met ` X ) ) |
| 6 | eqid | |- ( MetOpen ` ( D |` ( X X. X ) ) ) = ( MetOpen ` ( D |` ( X X. X ) ) ) |
|
| 7 | 6 4 | metdcn2 | |- ( ( D |` ( X X. X ) ) e. ( Met ` X ) -> ( D |` ( X X. X ) ) e. ( ( ( MetOpen ` ( D |` ( X X. X ) ) ) tX ( MetOpen ` ( D |` ( X X. X ) ) ) ) Cn K ) ) |
| 8 | 5 7 | syl | |- ( M e. MetSp -> ( D |` ( X X. X ) ) e. ( ( ( MetOpen ` ( D |` ( X X. X ) ) ) tX ( MetOpen ` ( D |` ( X X. X ) ) ) ) Cn K ) ) |
| 9 | 2 | reseq1i | |- ( D |` ( X X. X ) ) = ( ( dist ` M ) |` ( X X. X ) ) |
| 10 | 3 1 9 | mstopn | |- ( M e. MetSp -> J = ( MetOpen ` ( D |` ( X X. X ) ) ) ) |
| 11 | 10 10 | oveq12d | |- ( M e. MetSp -> ( J tX J ) = ( ( MetOpen ` ( D |` ( X X. X ) ) ) tX ( MetOpen ` ( D |` ( X X. X ) ) ) ) ) |
| 12 | 11 | oveq1d | |- ( M e. MetSp -> ( ( J tX J ) Cn K ) = ( ( ( MetOpen ` ( D |` ( X X. X ) ) ) tX ( MetOpen ` ( D |` ( X X. X ) ) ) ) Cn K ) ) |
| 13 | 8 12 | eleqtrrd | |- ( M e. MetSp -> ( D |` ( X X. X ) ) e. ( ( J tX J ) Cn K ) ) |